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1
Simple Linear Regression

These lecture notes are distributed in the hope that theywill be useful.
Any bug reports are appreciated.

1.1 Machine Learning
1.1.1 What isMachine Learning?
An algorithm is awell-defined sequence of instructions that, for a given sequence of
input arguments, yields some desired output.

In other words, it is a specific recipe for a function.

Developing algorithms is a tedious task.

Inmachine learning, we build and study computer algorithms thatmake predictions
or decisions but which are not manually programmed.

Learning needs somematerial based upon which new knowledge is to be acquired.

In other words, we need data.

1.1.2 Main Types ofMachine Learning Problems
Machine Learning Problems include, but are not limited to:

• Supervised learning– for every input point (e.g., a photo) there is an associated
desiredoutput (e.g.,whether it depicts a crosswalk orhowmany cars canbe seen
on it)

• Unsupervised learning– inputs are unlabelled, the aim is to discover the under-
lying structure in the data (e.g., automatically group customers w.r.t. common
behavioural patterns)

1
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• Semi-supervised learning – some inputs are labelled, the others are not (defin-
itely a cheaper scenario)

• Reinforcement learning– learn to act based on a feedback given after the actual
decision was made (e.g., learn to play The Witcher 7 by testing different hypo-
theses what to do to survive as long as possible)

1.2 Supervised Learning
1.2.1 Formalism
Let𝐗 = {𝔛1, … , 𝔛𝑛} be an input sample (“a database”) that consists of 𝑛 objects.

Most often we assume that each object𝔛𝑖 is represented using 𝑝 numbers for some
𝑝.

Wedenote this fact as𝔛𝑖 ∈ ℝ𝑝 (it is a𝑝-dimensional real vector or asequence of𝑝numbers
or a point in a 𝑝-dimensional real space or an element of a real 𝑝-space etc.).

If we have “complex” objects on input, we can always try representing them as fea-
ture vectors (e.g., come upwith numeric attributes that best describe them in a task
at hand).

Exercise 1.1 Consider the following problems:

1. Howwould you represent a patient in a clinic?

2. Howwould you represent a car in an insurance company’s database?

3. Howwould you represent a student in an university?

Of course, our setting is abstract in the sense that there might be different realities
hidden behind these symbols.

This is what maths is for – creating abstractions or models of complex entit-
ies/phenomena so that they can be much more easily manipulated or understood.
This is very powerful – spend a moment contemplating how many real-world situ-
ations fit into our framework.

This also includes image/video data, e.g., a 1920×1080 pixel image can be “unwound”
to a “flat” vector of length 2,073,600.

(*)There are some algorithms such asMultidimensional Scaling, Locally Linear Em-
bedding, IsoMap etc. that can do that automagically.

In cases such as this we say that we deal with structured (tabular) data
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–𝐗 can be written as an (𝑛 × 𝑝)-matrix:

𝐗 =
⎡
⎢
⎢
⎢
⎣

𝑥1,1 𝑥1,2 ⋯ 𝑥1,𝑝
𝑥2,1 𝑥2,2 ⋯ 𝑥2,𝑝

⋮ ⋮ ⋱ ⋮
𝑥𝑛,1 𝑥𝑛,2 ⋯ 𝑥𝑛,𝑝

⎤
⎥
⎥
⎥
⎦

Mathematically, we denote this as𝐗 ∈ ℝ𝑛×𝑝.

Remark. Structured data == think: Excel/Calc spreadsheets, SQL tables etc.

For an example, consider the famous Fisher’s Iris flower dataset, see ?iris in R and
https://en.wikipedia.org/wiki/Iris_flower_data_set.
X <- iris[1:6, 1:4] # first 6 rows and 4 columns

X # or: print(X)

## Sepal.Length Sepal.Width Petal.Length Petal.Width

## 1 5.1 3.5 1.4 0.2

## 2 4.9 3.0 1.4 0.2

## 3 4.7 3.2 1.3 0.2

## 4 4.6 3.1 1.5 0.2

## 5 5.0 3.6 1.4 0.2

## 6 5.4 3.9 1.7 0.4

dim(X) # gives n and p

## [1] 6 4

dim(iris) # for the full dataset

## [1] 150 5

𝑥𝑖,𝑗 ∈ ℝ represents the 𝑗-th feature of the 𝑖-th observation, 𝑗 = 1, … , 𝑝, 𝑖 = 1, … , 𝑛.

For instance:
X[3, 2] # 3rd row, 2nd column

## [1] 3.2

The third observation (data point, row in𝐗) consists of items (𝑥3,1, … , 𝑥3,𝑝) that can
be extracted by calling:
X[3,]

## Sepal.Length Sepal.Width Petal.Length Petal.Width

## 3 4.7 3.2 1.3 0.2

as.numeric(X[3,]) # drops names

## [1] 4.7 3.2 1.3 0.2

https://en.wikipedia.org/wiki/Iris_flower_data_set
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length(X[3,])

## [1] 4

Moreover, the second feature/variable/column is comprised of (𝑥1,2, 𝑥2,2, … , 𝑥𝑛,2):
X[,2]

## [1] 3.5 3.0 3.2 3.1 3.6 3.9

length(X[,2])

## [1] 6

We will sometimes use the following notation to emphasise that the 𝐗matrix con-
sists of 𝑛 rows or 𝑝 columns:

𝐗 =
⎡
⎢⎢⎢
⎣

𝐱1,⋅
𝐱2,⋅

⋮
𝐱𝑛,⋅

⎤
⎥⎥⎥
⎦

= [ 𝐱⋅,1 𝐱⋅,2 ⋯ 𝐱⋅,𝑝 ] .

Here, 𝐱𝑖,⋅ is a row vector of length 𝑝, i.e., a (1 × 𝑝)-matrix:

𝐱𝑖,⋅ = [ 𝑥𝑖,1 𝑥𝑖,2 ⋯ 𝑥𝑖,𝑝 ] .

Moreover, 𝐱⋅,𝑗 is a column vector of length 𝑛, i.e., an (𝑛 × 1)-matrix:

𝐱⋅,𝑗 = [ 𝑥1,𝑗 𝑥2,𝑗 ⋯ 𝑥𝑛,𝑗 ]
𝑇

=
⎡
⎢
⎢
⎢
⎣

𝑥1,𝑗
𝑥2,𝑗

⋮
𝑥𝑛,𝑗

⎤
⎥
⎥
⎥
⎦

,

where ⋅𝑇 denotes the transpose of a givenmatrix – think of this as a kind of rotation;
it allows us to introduce a set of “vertically stacked” objects using a single inline for-
mula.

1.2.2 DesiredOutputs
In supervised learning, apart from the inputs we are also given the corresponding
reference/desired outputs.

The aim of supervised learning is to try to create an “algorithm” that, given an input
point, generates an output that is as close as possible to the desired one. The given
data sample will be used to “train” this “model”.

Usually the reference outputs are encoded as individual numbers (scalars) or textual
labels.
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In other words, with each input 𝐱𝑖,⋅ we associate the desired output 𝑦𝑖:
# in iris, iris[, 5] gives the Ys

iris[sample(nrow(iris), 3), ] # three random rows

## Sepal.Length Sepal.Width Petal.Length Petal.Width Species

## 14 4.3 3.0 1.1 0.1 setosa

## 50 5.0 3.3 1.4 0.2 setosa

## 118 7.7 3.8 6.7 2.2 virginica

Hence, our dataset is [𝐗 𝐲] – each object is represented as a row vector [𝐱𝑖,⋅ 𝑦𝑖], 𝑖 =
1, … , 𝑛:

[𝐗 𝐲] =
⎡
⎢
⎢
⎢
⎣

𝑥1,1 𝑥1,2 ⋯ 𝑥1,𝑝 𝑦1
𝑥2,1 𝑥2,2 ⋯ 𝑥2,𝑝 𝑦2

⋮ ⋮ ⋱ ⋮ ⋮
𝑥𝑛,1 𝑥𝑛,2 ⋯ 𝑥𝑛,𝑝 𝑦𝑛

⎤
⎥
⎥
⎥
⎦

,

where:

𝐲 = [ 𝑦1 𝑦2 ⋯ 𝑦𝑛 ]𝑇 =
⎡
⎢⎢⎢
⎣

𝑦1
𝑦2
⋮

𝑦𝑛

⎤
⎥⎥⎥
⎦

.

1.2.3 Types of Supervised Learning Problems
Depending on the type of the elements in 𝐲 (the domain of 𝐲), supervised learning
problems are usually classified as:

• regression – each 𝑦𝑖 is a real number

e.g., 𝑦𝑖 = future market stock price with 𝐱𝑖,⋅ = prices from 𝑝 previous days

• classification – each 𝑦𝑖 is a discrete label

e.g., 𝑦𝑖 = healthy (0) or ill (1) with 𝐱𝑖,⋅ = a patient’s health record

• ordinal regression (a.k.a. ordinal classification) – each 𝑦𝑖 is a rank

e.g., 𝑦𝑖 = rating of a product on the scale 1–5 with 𝐱𝑖,⋅ = ratings of 𝑝most similar
products

Exercise 1.2 Example Problems – Discussion:

Which of the following are instances of classification problems? Which of them are regression
tasks?

What kind of data should you gather in order to tackle them?

• Detect email spam
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• Predict a market stock price
• Predict the likeability of a new ad
• Assess credit risk
• Detect tumour tissues inmedical images
• Predict time-to-recovery of cancer patients
• Recognise smiling faces on photographs
• Detect unattended luggage in airport security camera footage
• Turn on emergency braking to avoid a collision with pedestrians

A single dataset can become an instance of many different ML problems.

Examples – the wines dataset:
wines <- read.csv("datasets/winequality-all.csv", comment="#")

wines[1,]

## fixed.acidity volatile.acidity citric.acid residual.sugar chlorides

## 1 7.4 0.7 0 1.9 0.076

## free.sulfur.dioxide total.sulfur.dioxide density pH sulphates

## 1 11 34 0.9978 3.51 0.56

## alcohol response color

## 1 9.4 5 red

alcohol is a numeric (quantitative) variable (see Figure 1.1 for a histogram depicting
its empirical distribution):
summary(wines$alcohol) # continuous variable

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 8.0 9.5 10.3 10.5 11.3 14.9

hist(wines$alcohol, main="", col="white"); box()

color is a quantitative variable with two possible outcomes (see Figure 1.2 for a bar
plot):
table(wines$color) # binary variable

##

## red white

## 1599 4898

barplot(table(wines$color), col="white", ylim=c(0, 6000))

Moreover, response is an ordinal variable, representing a wine’s rating as assigned
by a wine expert (see Figure 1.3 for a barplot). Note that although the ranks are rep-
resentedwith numbers,we they are not continuous variables.Moreover, these ranks
are somethingmore than just labels – they are linearly ordered, we knowwhat’s the
smallest rank and whats the greatest one.
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Figure 1.1: Quantitative (numeric) outputs lead to regression problems
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Figure 1.2: Quantitative outputs lead to classification tasks
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table(wines$response) # ordinal variable

##

## 3 4 5 6 7 8 9

## 30 216 2138 2836 1079 193 5

barplot(table(wines$response), col="white", ylim=c(0, 3000))
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Figure 1.3: Ordinal variables constitute ordinal regression tasks

1.3 Simple Regression
1.3.1 Introduction
Simple regression is the easiest setting to start with – let’s assume 𝑝 = 1, i.e., all
inputs are 1-dimensional. Denote 𝑥𝑖 = 𝑥𝑖,1.

We will use it to build many intuitions, for example, it’ll be easy to illustrate all the
concepts graphically.
library("ISLR") # Credit dataset

plot(Credit$Balance, Credit$Rating) # scatter plot

Inwhat followswewill bemodelling theCreditRating (𝑌) as a functionof the average
Credit Card Balance (𝑋) in USD for customerswith positive Balance only. It is because
it is evident fromFigure 1.4 that some customerswith zero balance obtained a credit



Simple Linear Regression 9

0 500 1000 1500 2000

20
0

40
0

60
0

80
0

10
00

Credit$Balance

Cr
ed

it$
Ra

tin
g

Figure 1.4: A scatter plot of Rating vs. Balance

rating based on some external data source that we don’t have access to in our very
setting.
X <- as.matrix(as.numeric(Credit$Balance[Credit$Balance>0]))

Y <- as.matrix(as.numeric(Credit$Rating[Credit$Balance>0]))

Figure 1.5 gives the updated scatter plotwith the zero-balance clients “taken care of”.
plot(X, Y, xlab="X (Balance)", ylab="Y (Rating)")

Our aim is to construct a function 𝑓 that models Rating as a function of Balance,
𝑓 (𝑋) = 𝑌.

We are equipped with 𝑛 = 310 reference (observed) Ratings 𝐲 = [𝑦1 ⋯ 𝑦𝑛]𝑇 for
particular Balances 𝐱 = [𝑥1 ⋯ 𝑥𝑛]𝑇.

Note the following naming conventions:

• Variable types:

– 𝑋 – independent/explanatory/predictor variable

– 𝑌 – dependent/response/predicted variable

• Also note that:

– 𝑌 – idealisation (any possible Rating)

– 𝐲 = [𝑦1 ⋯ 𝑦𝑛]𝑇 – values actually observed

Themodel will not be ideal, but it might be usable:



10 LightweightMachine Learning Classics with R

0 500 1000 1500 2000

20
0

40
0

60
0

80
0

10
00

X (Balance)

Y 
(R

at
in

g)

Figure 1.5: A scatter plot of Rating vs. Balance with clients of Balance=0 removed

• We will be able to predict the rating of any new client.

What should be the rating of a client with Balance of $1500?

What should be the rating of a client with Balance of $2500?

• We will be able to describe (understand) this reality using a single mathematical
formula so as to infer that there is an association between𝑋 and 𝑌

Think of “data compression” and laws of physics, e.g., 𝐸 = 𝑚𝑐2.

(*) Mathematically, we will assume that there is some “true” function that models
the data (true relationship between 𝑌 and 𝑋), but the observed outputs are subject
to additive error:

𝑌 = 𝑓 (𝑋) + 𝜀.

𝜀 is a random term, classically we assume that errors are independent of each other,
have expected value of 0 (there is no systematic error =unbiased) and that they follow
a normal distribution.

(*) We denote this as 𝜀 ∼ 𝒩(0, 𝜎) (read: random variable 𝜀 follows a normal distri-
bution with expected value of 0 and standard deviation of 𝜎 for some 𝜎 ≥ 0).

𝜎 controls the amount of noise (and hence, uncertainty). Figure 1.6 gives the plot of
the probability distribution function (PDFs, densities) of𝒩(0, 𝜎) for different 𝜎s:
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Figure 1.6: Probability density functions of normal distributions with different
standard deviations 𝜎.

1.3.2 Search Space andObjective
There are many different functions that can be fitted into the observed (𝐱, 𝐲), com-
pare Figure 1.7. Some of them are better than the other (with respect to different
aspects, such as fit quality, simplicity etc.).
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Figure 1.7: Different polynomial models fitted to data
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Thus, we need a formalmodel selection criterion that could enable as to tackle the
model fitting task on a computer.

Usually, we will be interested in a model that minimises appropriately aggregated
residuals 𝑓 (𝑥𝑖) − 𝑦𝑖, i.e., predicted outputsminus observed outputs, often denoted
with ̂𝑦𝑖 − 𝑦𝑖, for 𝑖 = 1, … , 𝑛.
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observed output
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fitted model

Figure 1.8: Residuals are defined as the differences between the predicted and ob-
served outputs ̂𝑦𝑖 − 𝑦𝑖

In Figure 1.8, the residuals correspond to the lengths of the dashed line segments –
theymeasure the discrepancy between the outputs generated by themodel (whatwe
get) and the true outputs (what we want).

Note that some sources define residuals as 𝑦𝑖 − ̂𝑦𝑖 = 𝑦𝑖 − 𝑓 (𝑥𝑖).

Top choice: sum of squared residuals:

SSR(𝑓 |𝐱, 𝐲) = (𝑓 (𝑥1) − 𝑦1)2 + ⋯ + (𝑓 (𝑥𝑛) − 𝑦𝑛)2

=
𝑛

∑
𝑖=1

(𝑓 (𝑥𝑖) − 𝑦𝑖)
2

Remark. Read “∑𝑛
𝑖=1 𝑧𝑖” as “the sum of 𝑧𝑖 for 𝑖 from 1 to 𝑛”; this is just a shorthand

for 𝑧1 + 𝑧2 + ⋯ + 𝑧𝑛.
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Remark. Thenotation SSR(𝑓 |𝐱, 𝐲)means that it is the errormeasure corresponding
to the model (𝑓 ) given our data.
We could’ve denoted it with SSR𝐱,𝐲(𝑓 ) or even SSR(𝑓 ) to emphasise that 𝐱, 𝐲 are
just fixed values and we are not interested in changing them at all (they are “global
variables”).

We enjoy SSR because (amongst others):

• larger errors are penalised muchmore than smaller ones

(this can be considered a drawback as well)

• (**) statistically speaking, this has a clear underlying interpretation

(assuming errors are normally distributed, finding amodel minim-
ising the SSR is equivalent to maximum likelihood estimation)

• the models minimising the SSR can often be found easily

(corresponding optimisation tasks have an analytic solution – stud-
ied already by Gauss in the late 18th century)

(**) Other choices:

• regularised SSR, e.g., lasso or ridge regression (in the case of multiple input vari-
ables)

• sum or median of absolute values (robust regression)

Fitting a model to data can be written as an optimisation problem:

min
𝑓 ∈ℱ

SSR(𝑓 |𝐱, 𝐲),
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i.e., find 𝑓 minimising the SSR (seek “best” 𝑓 )
amongst the set of admissible modelsℱ .

Exampleℱs:

• ℱ = {All possible functions of one variable} – if there are no repeated 𝑥𝑖 ’s, this
corresponds to data interpolation; note that there aremany functions that give SSR
of 0.

• ℱ = {𝑥 ↦ 𝑥2, 𝑥 ↦ cos(𝑥), 𝑥 ↦ exp(2𝑥 + 7) − 9} – obviously an ad-hoc choice but
you can easily choose the best amongst the 3 by computing 3 sums of squares.

• ℱ = {𝑥 ↦ 𝑎 + 𝑏𝑥} – the space of linear functions of one variable

• etc.

(e.g., 𝑥 ↦ 𝑥2 is read “𝑥maps to 𝑥2” and is an elegant way to define an inline function
𝑓 such that 𝑓 (𝑥) = 𝑥2)

1.4 Simple Linear Regression
1.4.1 Introduction
If the family of admissible modelsℱ consists only of all linear functions of one vari-
able, we deal with a simple linear regression.

Our problem becomes:

min
𝑎,𝑏∈ℝ

𝑛
∑
𝑖=1

(𝑎 + 𝑏𝑥𝑖 − 𝑦𝑖)
2

In other words, we seek best fitting line in terms of the squared residuals.

This is themethod of least squares.

This is particularly nice, because our search space is just ℝ2 – easy to handle both
analytically and numerically.

Exercise 1.3 Which of the lines in Figure 1.9 is the least squares solution?

1.4.2 Solution in R
Let’s fit the linear model minimising the SSR in R.The lm() function (linear models)
has a convenient formula-based interface.
f <- lm(Y~X)
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y=226+0.266x; SSR=2132108
y=000+0.511x; SSR=6504314
y=218+0.264x; SSR=2164373

Figure 1.9: Three simple linear models together with the corresponding SSRs

In R, the expression “Y~X” denotes a formula, which we read as: variable Y is a func-
tion of X. Note that the dependent variable is on the left side of the formula. Here, X
and Y are two R numeric vectors of identical lengths.

Let’s print the fitted model:
print(f)

##

## Call:

## lm(formula = Y ~ X)

##

## Coefficients:

## (Intercept) X

## 226.471 0.266

Hence, the fitted model is:

𝑌 = 𝑓 (𝑋) = 226.47114 + 0.26615𝑋 (+𝜀)

Coefficient 𝑎 (intercept):
f$coefficient[1]

## (Intercept)

## 226.47
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Coefficient 𝑏 (slope):
f$coefficient[2]

## X

## 0.26615

Plotting, see Figure 1.10:
plot(X, Y, col="#000000aa")

abline(f, col=2, lwd=3)
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Figure 1.10: Fitted regression line

SSR:
sum(f$residuals^2)

## [1] 2132108

sum((f$coefficient[1]+f$coefficient[2]*X-Y)^2) # equivalent

## [1] 2132108

We can predict the model’s output for yet-unobserved inputs by writing:
X_new <- c(1500, 2000, 2500) # example inputs

f$coefficient[1] + f$coefficient[2]*X_new

## [1] 625.69 758.76 891.84

Note that linear models can also be fitted based on formulas that refer to a data
frame’s columns. For example, let us wrap both 𝐱 and 𝐲 inside a data frame:
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XY <- data.frame(Balance=X, Rating=Y)

head(XY, 3)

## Balance Rating

## 1 333 283

## 2 903 483

## 3 580 514

By writing:
f <- lm(Rating~Balance, data=XY)

now Balance and Rating refer to column names in the XY data frame, and not the
objects in R’s “workspace”.

Based on the above, we canmake a prediction using the predict() function”
X_new <- data.frame(Balance=c(1500, 2000, 2500))

predict(f, X_new)

## 1 2 3

## 625.69 758.76 891.84

Interestingly:
predict(f, data.frame(Balance=c(5000)))

## 1

## 1557.2

This ismore than the highest possible rating –we have extrapolated way beyond the
observable data range.

Note that our𝑌 = 𝑎+𝑏𝑋model is interpretable andwell-behaving (not allmachine
learningmodels will have this feature, think: deep neural networks, whichwe rather
conceive as black boxes):

• we know that by increasing𝑋 by a small amount,𝑌 will also increase (positive cor-
relation),

• the model is continuous – small change in𝑋 doesn’t yield any drastic change in 𝑌,

• we know what will happen if we increase or decrease𝑋 by, say, 100,

• the function is invertible– ifwewantRating of 500,we can compute the associated
preferred Balance that should yield it (provided that the model is valid).

1.4.3 Analytic Solution
It may be shown (which we actually do below) that the solution is:
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⎧{{{{{{
⎨{{{{{{⎩

𝑏 =
𝑛

𝑛
∑
𝑖=1

𝑥𝑖𝑦𝑖 −
𝑛

∑
𝑖=1

𝑦𝑖
𝑛

∑
𝑖=1

𝑥𝑖

𝑛
𝑛

∑
𝑖=1

𝑥𝑖𝑥𝑖 −
𝑛

∑
𝑖=1

𝑥𝑖
𝑛

∑
𝑖=1

𝑥𝑖

𝑎 = 1
𝑛

𝑛
∑
𝑖=1

𝑦𝑖 − 𝑏 1
𝑛

𝑛
∑
𝑖=1

𝑥𝑖

Which can be implemented in R as follows:
n <- length(X)

b <- (n*sum(X*Y)-sum(X)*sum(Y))/(n*sum(X*X)-sum(X)^2)

a <- mean(Y)-b*mean(X)

c(a, b) # the same as f$coefficients

## [1] 226.47114 0.26615

1.4.4 Derivation of the Solution (**)
Remark. You can safely skip this part if you are yet to know how to search for amin-
imum of a function of many variables and what are partial derivatives.

Denote with:

𝐸(𝑎, 𝑏) = SSR(𝑥 ↦ 𝑎 + 𝑏𝑥|𝐱, 𝐲) =
𝑛

∑
𝑖=1

(𝑎 + 𝑏𝑥𝑖 − 𝑦𝑖)
2 .

We seek the minimum of 𝐸w.r.t. both 𝑎, 𝑏.

Theorem. If 𝐸 has a (local) minimum at (𝑎∗, 𝑏∗), then its partial derivatives vanish
therein, i.e., 𝜕𝐸/𝜕𝑎(𝑎∗, 𝑏∗) = 0 and 𝜕𝐸/𝜕𝑏(𝑎∗, 𝑏∗) = 0.

We have:

𝐸(𝑎, 𝑏) =
𝑛

∑
𝑖=1

(𝑎 + 𝑏𝑥𝑖 − 𝑦𝑖)
2 .

We need to compute the partial derivatives 𝜕𝐸/𝜕𝑎 (derivative of 𝐸w.r.t. variable 𝑎 –
all other terms treated as constants) and 𝜕𝐸/𝜕𝑏 (w.r.t. 𝑏).

Useful rules – derivatives w.r.t. 𝑎 (denote 𝑓 ′(𝑎) = (𝑓 (𝑎))′):

• (𝑓 (𝑎) + 𝑔(𝑎))′ = 𝑓 ′(𝑎) + 𝑔′(𝑎) (derivative of sum is sum of derivatives)
• (𝑓 (𝑎)𝑔(𝑎))′ = 𝑓 ′(𝑎)𝑔(𝑎) + 𝑓 (𝑎)𝑔′(𝑎) (derivative of product)
• (𝑓 (𝑔(𝑎)))′ = 𝑓 ′(𝑔(𝑎))𝑔′(𝑎) (chain rule)
• (𝑐)′ = 0 for any constant 𝑐 (expression not involving 𝑎)
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• (𝑎𝑝)′ = 𝑝𝑎𝑝−1 for any 𝑝
• in particular: (𝑐𝑎2 + 𝑑)′ = 2𝑐𝑎, (𝑐𝑎)′ = 𝑐, ((𝑐𝑎 + 𝑑)2)′ = 2(𝑐𝑎 + 𝑑)𝑐 (application of
the above rules)

We seek 𝑎, 𝑏 such that 𝜕𝐸
𝜕𝑎 (𝑎, 𝑏) = 0 and 𝜕𝐸

𝜕𝑏 (𝑎, 𝑏) = 0.

⎧{{{
⎨{{{⎩

𝜕𝐸
𝜕𝑎 (𝑎, 𝑏) = 2

𝑛
∑
𝑖=1

(𝑎 + 𝑏𝑥𝑖 − 𝑦𝑖) = 0

𝜕𝐸
𝜕𝑏 (𝑎, 𝑏) = 2

𝑛
∑
𝑖=1

(𝑎 + 𝑏𝑥𝑖 − 𝑦𝑖) 𝑥𝑖 = 0

This is a system of 2 linear equations. Easy.

Rearranging like back in the school days:

⎧{{{
⎨{{{⎩

𝑏
𝑛

∑
𝑖=1

𝑥𝑖 + 𝑎𝑛 =
𝑛

∑
𝑖=1

𝑦𝑖

𝑏
𝑛

∑
𝑖=1

𝑥𝑖𝑥𝑖 + 𝑎
𝑛

∑
𝑖=1

𝑥𝑖 =
𝑛

∑
𝑖=1

𝑥𝑖𝑦𝑖

It is left as an exercise to show that the solution is:

⎧{{{{{{
⎨{{{{{{⎩

𝑏∗ =
𝑛

𝑛
∑
𝑖=1

𝑥𝑖𝑦𝑖 −
𝑛

∑
𝑖=1

𝑦𝑖
𝑛

∑
𝑖=1

𝑥𝑖

𝑛
𝑛

∑
𝑖=1

𝑥𝑖𝑥𝑖 −
𝑛

∑
𝑖=1

𝑥𝑖
𝑛

∑
𝑖=1

𝑥𝑖

𝑎∗ = 1
𝑛

𝑛
∑
𝑖=1

𝑦𝑖 − 𝑏∗ 1
𝑛

𝑛
∑
𝑖=1

𝑥𝑖

(we should additionally perform the second derivative test to assure that this is the
minimum of 𝐸 – which is exactly the case though)

(**) In the next chapter, we will introduce the notion of Pearson’s linear coefficient,
𝑟 (see cor() in R). It might be shown that 𝑎 and 𝑏 can also be rewritten as:
(b <- cor(X,Y)*sd(Y)/sd(X))

## [,1]

## [1,] 0.26615

(a <- mean(Y)-b*mean(X))

## [,1]

## [1,] 226.47
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1.5 Exercises in R
1.5.1 TheAnscombeQuartet
Here is a famous illustrative example proposed by the statistician Francis Anscombe
in the early 1970s.
print(anscombe) # `anscombe` is a built-in object

## x1 x2 x3 x4 y1 y2 y3 y4

## 1 10 10 10 8 8.04 9.14 7.46 6.58

## 2 8 8 8 8 6.95 8.14 6.77 5.76

## 3 13 13 13 8 7.58 8.74 12.74 7.71

## 4 9 9 9 8 8.81 8.77 7.11 8.84

## 5 11 11 11 8 8.33 9.26 7.81 8.47

## 6 14 14 14 8 9.96 8.10 8.84 7.04

## 7 6 6 6 8 7.24 6.13 6.08 5.25

## 8 4 4 4 19 4.26 3.10 5.39 12.50

## 9 12 12 12 8 10.84 9.13 8.15 5.56

## 10 7 7 7 8 4.82 7.26 6.42 7.91

## 11 5 5 5 8 5.68 4.74 5.73 6.89

What we see above is a single data frame that encodes four separate datasets:
anscombe$x1 and anscombe$y1 define the first pair of variables, anscombe$x2 and
anscombe$y2 define the second pair and so forth.

Exercise 1.4 Split the above data (manually) into four data frames ans1, …, ans4 with
columns x and y.

For example, ans1 should look like:
print(ans1)

## x y

## 1 10 8.04

## 2 8 6.95

## 3 13 7.58

## 4 9 8.81

## 5 11 8.33

## 6 14 9.96

## 7 6 7.24

## 8 4 4.26

## 9 12 10.84

## 10 7 4.82

## 11 5 5.68
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Solution.
ans1 <- data.frame(x=anscombe$x1, y=anscombe$y1)

ans2 <- data.frame(x=anscombe$x2, y=anscombe$y2)

ans3 <- data.frame(x=anscombe$x3, y=anscombe$y3)

ans4 <- data.frame(x=anscombe$x4, y=anscombe$y4)

print(ans1)

■
Exercise 1.5 Compute the mean of each x and y variable.

Solution.
mean(ans1$x) # individual column

## [1] 9

mean(ans1$y) # individual column

## [1] 7.5009

sapply(ans2, mean) # all columns in ans2

## x y

## 9.0000 7.5009

sapply(anscombe, mean) # all columns in the full anscombe dataset

## x1 x2 x3 x4 y1 y2 y3 y4

## 9.0000 9.0000 9.0000 9.0000 7.5009 7.5009 7.5000 7.5009

Comment:This is really interesting, all themeans of x columns as well as themeans
of ys are almost identical.

■
Exercise 1.6 Compute the standard deviation of each x and y variable.

Solution.

The solution is similar to the previous one, just replace meanwith sd. Here, to learn something
new,wewill use the knitr::kable() function that pretty-prints a givenmatrix or data frame:
results <- sapply(anscombe, sd)

knitr::kable(results, col.names="standard deviation")

standard deviation

x1 3.3166
x2 3.3166
x3 3.3166
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standard deviation

x4 3.3166
y1 2.0316
y2 2.0317
y3 2.0304
y4 2.0306

Comment:This is evenmore interesting, because the numbers agree up to 2 decimal
digits.

■
Exercise 1.7 Fit a simple linear regression model for each data set. Draw the scatter plots
again (plot()) and add the regression lines (lines() or abline()).

Solution.

To recall, this can be done with the lm() function explained in Lecture 2.

At this pointwe shouldalreadyhavebecome lazy– the tasks are very repetitious. Let’s automate
them by writing a single function that does all the above for any data set:
fit_models <- function(ans) {

# ans is a data frame with columns x and y

f <- lm(y~x, data=ans) # fit linear model

print(f$coefficients) # estimated coefficients

plot(ans$x, ans$y) # scatter plot

abline(f, col="red") # regression line

return(f)

}

Nowwe can apply it on the four particular examples.
par(mfrow=c(2, 2)) # four plots on 1 figure (2x2 grid)

f1 <- fit_models(ans1)

## (Intercept) x

## 3.00009 0.50009

f2 <- fit_models(ans2)

## (Intercept) x

## 3.0009 0.5000

f3 <- fit_models(ans3)

## (Intercept) x

## 3.00245 0.49973
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f4 <- fit_models(ans4)

## (Intercept) x

## 3.00173 0.49991
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Figure 1.11: Fitted regression lines for the Anscombe quartet

Comment: All the estimated models are virtually the same, the regression lines are
𝑦 = 0.5𝑥 + 3, compare Figure 1.11.

■
Exercise 1.8 Create scatter plots of the residuals (predicted ̂𝑦𝑖 minus true 𝑦𝑖) as a function of
the predicted ̂𝑦𝑖 = 𝑓 (𝑥𝑖) for every 𝑖 = 1, … , 11.

Solution.
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To recall, the model predictions can be generated by (amongst others) calling the predict()
function.
y_pred1 <- f1$fitted.values # predict(f1, ans1)

y_pred2 <- f2$fitted.values # predict(f2, ans2)

y_pred3 <- f3$fitted.values # predict(f3, ans3)

y_pred4 <- f4$fitted.values # predict(f4, ans4)

Plots of residuals as a function of the predicted (fitted) values are given in Figure 1.12.
par(mfrow=c(2, 2)) # four plots on 1 figure (2x2 grid)

plot(y_pred1, y_pred1-ans1$y)

plot(y_pred2, y_pred2-ans2$y)

plot(y_pred3, y_pred3-ans3$y)

plot(y_pred4, y_pred4-ans4$y)

Comment: Ideally, the residuals shouldn’t be correlated with the predicted values –
they should “oscillate” randomly around 0. This is only the case of the first dataset.
All the other cases are “alarming” in the sense that they suggest that the obtained
models are “suspicious” (perhaps data cleansing is needed or a linearmodel is not at
all appropriate).

■
Exercise 1.9 Draw conclusions (in your ownwords).

Solution.

We’re being taught a lesson here: don’t perform data analysis tasks automatically, don’t look at
bare numbers only, visualise your data first!

■
Exercise 1.10 Read more about Anscombe’s quartet at https://en.wikipedia.org/wiki/Ansc
ombe%27s_quartet

1.6 Outro
1.6.1 Remarks
In supervised learning,with each input point, there’s an associated reference output
value.

Learning a model = constructing a function that approximates (minimising some
error measure) the given data.

Regression = the output variable 𝑌 is continuous.

https://en.wikipedia.org/wiki/Anscombe%27s_quartet
https://en.wikipedia.org/wiki/Anscombe%27s_quartet
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Figure 1.12: Residuals vs. fitted values for the regression lines fitted to the Anscombe
quartet

We studied linear models with a single independent variable based on the least
squares (SSR) fit.

In the next part we will extend this setting to the case of many variables, i.e., 𝑝 > 1,
called multiple regression.

1.6.2 Further Reading
Recommended further reading: (James et al. 2017: Chapters 1, 2 and 3)

Other: (Hastie et al. 2017: Chapter 1, Sections 3.2 and 3.3)





2
Multiple Regression

These lecture notes are distributed in the hope that theywill be useful.
Any bug reports are appreciated.

2.1 Introduction
2.1.1 Formalism
Let𝐗 ∈ ℝ𝑛×𝑝 be an input matrix that consists of 𝑛 points in a 𝑝-dimensional space.

In other words, we have a database on 𝑛 objects, each of which being described by
means of 𝑝 numerical features.

𝐗 =
⎡
⎢
⎢
⎢
⎣

𝑥1,1 𝑥1,2 ⋯ 𝑥1,𝑝
𝑥2,1 𝑥2,2 ⋯ 𝑥2,𝑝

⋮ ⋮ ⋱ ⋮
𝑥𝑛,1 𝑥𝑛,2 ⋯ 𝑥𝑛,𝑝

⎤
⎥
⎥
⎥
⎦

Recall that in supervised learning, apart from𝐗,we are also given the corresponding
𝐲; with each input point 𝐱𝑖,⋅ we associate the desired output 𝑦𝑖.

In this chapterweare still interested in regression tasks; hence,we assume that each
𝑦𝑖 it is a real number, i.e., 𝑦𝑖 ∈ ℝ.

Hence, ourdataset is [𝐗𝐲]–where eachobject is representedas a rowvector [𝐱𝑖,⋅ 𝑦𝑖],
𝑖 = 1, … , 𝑛:

27
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[𝐗 𝐲] =
⎡
⎢
⎢
⎢
⎣

𝑥1,1 𝑥1,2 ⋯ 𝑥1,𝑝 𝑦1
𝑥2,1 𝑥2,2 ⋯ 𝑥2,𝑝 𝑦2

⋮ ⋮ ⋱ ⋮ ⋮
𝑥𝑛,1 𝑥𝑛,2 ⋯ 𝑥𝑛,𝑝 𝑦𝑛

⎤
⎥
⎥
⎥
⎦

.

2.1.2 Simple Linear Regression - Recap
In a simple regression task, we have assumed that 𝑝 = 1 – there is only one inde-
pendent variable, denoted 𝑥𝑖 = 𝑥𝑖,1.

We restricted ourselves to linear models of the form 𝑌 = 𝑓 (𝑋) = 𝑎 + 𝑏𝑋 that min-
imised the sum of squared residuals (SSR), i.e.,

min
𝑎,𝑏∈ℝ

𝑛
∑
𝑖=1

(𝑎 + 𝑏𝑥𝑖 − 𝑦𝑖)
2 .

The solution is:

⎧{{{{{{
⎨{{{{{{⎩

𝑏 =
𝑛

𝑛
∑
𝑖=1

𝑥𝑖𝑦𝑖 −
𝑛

∑
𝑖=1

𝑦𝑖
𝑛

∑
𝑖=1

𝑥𝑖

𝑛
𝑛

∑
𝑖=1

𝑥𝑖𝑥𝑖 −
𝑛

∑
𝑖=1

𝑥𝑖
𝑛

∑
𝑖=1

𝑥𝑖

𝑎 = 1
𝑛

𝑛
∑
𝑖=1

𝑦𝑖 − 𝑏 1
𝑛

𝑛
∑
𝑖=1

𝑥𝑖

Fitting in R can be performed by calling the lm() function:
library("ISLR") # Credit dataset

X <- as.numeric(Credit$Balance[Credit$Balance>0])

Y <- as.numeric(Credit$Rating[Credit$Balance>0])

f <- lm(Y~X) # Y~X is a formula, read: Y is a function of X

print(f)

##

## Call:

## lm(formula = Y ~ X)

##

## Coefficients:

## (Intercept) X

## 226.471 0.266

Figure 2.1 gives the scatter plot of Y vs.X togetherwith thefitted simple linearmodel.
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plot(X, Y, xlab="X (Balance)", ylab="Y (Credit)")

abline(f, col=2, lwd=3)
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Figure 2.1: Fitted regression line for the Credit dataset

2.2 Multiple Linear Regression
2.2.1 ProblemFormulation
Let’s now generalise the above to the case of many variables𝑋1, … , 𝑋𝑝.

We wish to model the dependent variable as a function of 𝑝 independent variables.

𝑌 = 𝑓 (𝑋1, … , 𝑋𝑝) (+𝜀)

Restricting ourselves to the class of linearmodels, we have

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑝𝑋𝑝.

Above we studied the case where 𝑝 = 1, i.e., 𝑌 = 𝑎 + 𝑏𝑋1 with 𝛽0 = 𝑎 and 𝛽1 = 𝑏.

The above equation defines:

• 𝑝 = 1—a line (see Figure 2.1),
• 𝑝 = 2—a plane (see Figure 2.2),
• 𝑝 ≥ 3—a hyperplane (well, most people find it difficult to imagine objects in high
dimensions, but we are lucky to have this thing called maths).
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Figure 2.2: Fitted regression plane for the Credit dataset

2.2.2 Fitting a LinearModel in R
lm() accepts a formula of the form Y~X1+X2+...+Xp.

It finds the least squares fit, i.e., solves

min
𝛽0,𝛽1,…,𝛽𝑝∈ℝ

𝑛
∑
𝑖=1

(𝛽0 + 𝛽1𝑥𝑖,1 + ⋯ + 𝛽𝑝𝑥𝑖,𝑝 − 𝑦𝑖)
2

X1 <- as.numeric(Credit$Balance[Credit$Balance>0])

X2 <- as.numeric(Credit$Income[Credit$Balance>0])

Y <- as.numeric(Credit$Rating[Credit$Balance>0])

f <- lm(Y~X1+X2)

f$coefficients # ß0, ß1, ß2

## (Intercept) X1 X2

## 172.5587 0.1828 2.1976

By the way, the 3D scatter plot in Figure 2.2 was generated by calling:
library("scatterplot3d")

s3d <- scatterplot3d(X1, X2, Y,

angle=60, # change angle to reveal more

highlight.3d=TRUE, xlab="Balance", ylab="Income",



Multiple Regression 31

zlab="Rating")

s3d$plane3d(f, lty.box="solid")

(s3d is an R list, one of its elements named plane3d is a function object – this is legal)

2.3 Finding the BestModel
2.3.1 Model Diagnostics
Here is Rating (𝑌) as function ofBalance (𝑋1, lefthand side of Figure 2.3) and Income
(𝑋2, righthand side of Figure 2.3).
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Figure 2.3: Scatter plots of 𝑌 vs.𝑋1 and𝑋2

Moreover, Figure 2.4 depicts (in a hopefully readable manner) both 𝑋1 and 𝑋2 with
Rating 𝑌 encoded with a colour (low ratings are green, high ratings are red; some
rating values are explicitly printed out within the plot).

Consider the three followingmodels.

Formula Equation

Rating ~ Balance + Income 𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2
Rating ~ Balance 𝑌 = 𝑎 + 𝑏𝑋1 (𝛽0 = 𝑎, 𝛽1 = 𝑏, 𝛽2 = 0)
Rating ~ Income 𝑌 = 𝑎 + 𝑏𝑋2 (𝛽0 = 𝑎, 𝛽1 = 0, 𝛽2 = 𝑏)
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Figure 2.4: A heatmap for Rating as a function of Balance and Income; greens rep-
resent low credit ratings, whereas reds – high ones

f12 <- lm(Y~X1+X2) # Rating ~ Balance + Income

f12$coefficients

## (Intercept) X1 X2

## 172.5587 0.1828 2.1976

f1 <- lm(Y~X1) # Rating ~ Balance

f1$coefficients

## (Intercept) X1

## 226.47114 0.26615

f2 <- lm(Y~X2) # Rating ~ Income

f2$coefficients

## (Intercept) X2

## 253.8514 3.0253

Which of the three models is the best? Of course, by using the word “best”, we need
to answer the question “best?… but with respect to what kind of measure?”

So far we were fitting w.r.t. SSR, as the multiple regression model generalises the
two simple ones, the former must yield a not-worse SSR.This is because in the case
of𝑌 = 𝛽0 +𝛽1𝑋1 +𝛽2𝑋2, setting𝛽1 to 0 (just one of uncountablymany possible𝛽1s,
if it happens to be the best one, good for us) gives𝑌 = 𝑎 + 𝑏𝑋2 whereas by setting 𝛽2
to 0 we obtain 𝑌 = 𝑎 + 𝑏𝑋1.
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sum(f12$residuals^2)

## [1] 358261

sum(f1$residuals^2)

## [1] 2132108

sum(f2$residuals^2)

## [1] 1823473

We get that, in terms of SSRs, 𝑓12 is better than 𝑓2, which in turn is better than 𝑓1.
However, these error values per se (sheer numbers) are meaningless (not meaning-
ful).

Remark. Interpretability in ML has always been an important issue, think the EU
General Data Protection Regulation (GDPR), amongst others.

2.3.1.1 SSR,MSE, RMSE andMAE

The quality of fit can be assessed by performing some descriptive statistical analysis of
the residuals, ̂𝑦𝑖 − 𝑦𝑖, for 𝑖 = 1, … , 𝑛.

I know how to summarise data on the residuals! Of course I should compute their
arithmetic mean and I’m done with that task! Interestingly, the mean of residuals
(this can be shown analytically) in the least squared fit is always equal to 0:

1
𝑛

𝑛
∑
𝑖=1

( ̂𝑦𝑖 − 𝑦𝑖) = 0.

Therefore, we need a different metric.

Exercise 2.1 (*) A proof of this fact is left as an exercise to the curious; assume 𝑝 = 1 just as
in the previous chapter and note that ̂𝑦𝑖 = 𝑎𝑥𝑖 + 𝑏.
mean(f12$residuals) # almost zero numerically

## [1] -2.7045e-16

all.equal(mean(f12$residuals), 0)

## [1] TRUE

We noted that sum of squared residuals (SSR) is not interpretable, but the mean
squared residuals (MSR) – also calledmean squared error (MSE) regression loss – is
a little better. Recall that mean is defined as the sum divided by number of samples.

MSE(𝑓 ) = 1
𝑛

𝑛
∑
𝑖=1

(𝑓 (𝐱𝑖,⋅) − 𝑦𝑖)2.
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mean(f12$residuals^2)

## [1] 1155.7

mean(f1$residuals^2)

## [1] 6877.8

mean(f2$residuals^2)

## [1] 5882.2

This gives an information of howmuch do we err per sample, so at least this measure
does not depend on 𝑛 anymore. However, if the original 𝑌s are, say, in metres [m],
MSE is expressed in metres squared [m2].

To account for that, wemay consider the root mean squared error (RMSE):

RMSE(𝑓 ) =
√
√√
⎷

1
𝑛

𝑛
∑
𝑖=1

(𝑓 (𝐱𝑖,⋅) − 𝑦𝑖)2.

This is just like with the sample variance vs. standard deviation – recall the latter is
defined as the square root of the former.
sqrt(mean(f12$residuals^2))

## [1] 33.995

sqrt(mean(f1$residuals^2))

## [1] 82.932

sqrt(mean(f2$residuals^2))

## [1] 76.695

The interpretation of theRMSE is rather quirky; it is some-sort-of-averaged deviance
from the true rating (which is on the scale 0–1000, hence we see that the first model
is not that bad). Recall that the square function is sensitive to large observations,
hence, it penalises notable deviations more heavily.

As still we have a problem with finding something easily interpretable (your non-
technical boss or clientmay ask you: butwhat do thesenumbersmean??),we suggest
here that themean absolute error (MAE; also calledmean absolute deviations,MAD)
might be a better idea than the above:

MAE(𝑓 ) = 1
𝑛

𝑛
∑
𝑖=1

|𝑓 (𝐱𝑖,⋅) − 𝑦𝑖|.

mean(abs(f12$residuals))

## [1] 22.863
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mean(abs(f1$residuals))

## [1] 61.489

mean(abs(f2$residuals))

## [1] 64.151

With the above we may say “On average, the predicted rating differs from the ob-
served one by…”.That is good enough.

Remark. (*) Youmay askwhy don’t we fitmodels so as tominimise theMAE andwe
minimise the RMSE instead (note that minimising RMSE is the same as minim-
ising the SSR, one is a strictlymonotone transformation of the other and do not af-
fect the solution). Well, it is possible. It turns out that, however, minimising MAE
is more computationally expensive and the solution may be numerically unstable.
So it’s rarely an analyst’s first choice (assuming they are well-educated enough to
knowabout theMADregression task).However, itmaybeworth trying it out some-
times.

Sometimes we might prefer MAD regression to the classic one if our data is heav-
ily contaminated by outliers. But in such cases it is worth checking if proper data
cleansing does the trick.

2.3.1.2 Graphical Summaries of Residuals

If we are not happy with single numerical aggregated of the residuals or their abso-
lute values, we can (and should) always compute a whole bunch of descriptive stat-
istics:
summary(f12$residuals)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## -108.10 -1.94 7.81 0.00 20.25 50.62

summary(f1$residuals)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## -226.8 -48.3 -10.1 0.0 42.6 268.7

summary(f2$residuals)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## -195.16 -57.34 -1.28 0.00 64.01 175.34

The outputs generated by summary() include:

• Min. – sample minimum
• 1st Qu. – 1st quartile == 25th percentile == quantile of order 0.25
• Median –median == 50th percentile == quantile of order 0.5
• 3rd Qu. – 3rd quartile = 75th percentile == quantile of order 0.75
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• Max. – sample maximum

For example, 1st quartile is the observation 𝑞 such that 25% values are ≤ 𝑞 and 75%
values are≥ 𝑞, see ?quantile in R.

Graphically, it is nice to summarise the empirical distribution of the residuals on a
box andwhisker plot. Here is the key to decipher Figure 2.5:

• IQR == Interquartile range == Q3−Q1 (box width)
• The box contains 50% of the “most typical” observations
• Box and whiskers altogether have width≤ 4 IQR
• Outliers == observations potentially worth inspecting (is it a bug or a feature?)
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1st Qu. (Q1)
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Min.
Max.

(potential) outliers

Q3 + 1.5 IQRQ1 - 1.5 IQR

Figure 2.5: An example boxplot

Figure 2.6 is worth a thousand words:
boxplot(horizontal=TRUE, xlab="residuals", col="white",

list(f12=f12$residuals, f1=f1$residuals, f2=f2$residuals))

abline(v=0, lty=3)

Figure 2.7 gives a violin plot – a blend of a box plot and a (kernel) density estimator
(histogram-like):
library("vioplot")

vioplot(horizontal=TRUE, xlab="residuals", col="white",

list(f12=f12$residuals, f1=f1$residuals, f2=f2$residuals))

abline(v=0, lty=3)

We can also take a look at the absolute values of the residuals. Here are some de-
scriptive statistics:
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Figure 2.6: Box plots of the residuals for the three models studied
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Figure 2.7: Violin plots of the residuals for the three models studied
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summary(abs(f12$residuals))

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.065 6.464 14.071 22.863 26.418 108.100

summary(abs(f1$residuals))

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.506 19.664 45.072 61.489 80.124 268.738

summary(abs(f2$residuals))

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 0.655 29.854 59.676 64.151 95.738 195.156

Figure 2.8 is worth $1000:
boxplot(horizontal=TRUE, col="white", xlab="abs(residuals)",

list(f12=abs(f12$residuals), f1=abs(f1$residuals),

f2=abs(f2$residuals)))

abline(v=0, lty=3)

f1
2

f1
f2

0 50 100 150 200 250
abs(residuals)

Figure 2.8: Box plots of the modules of the residuals for the three models studied

2.3.1.3 Coefficient of Determination (R-squared)

If we didn’t know the range of the dependent variable (in our case we do know that
the credit rating is on the scale 0–1000), the RMSE or MAE would be hard to inter-
pret.

It turns out that there is a popular normalised (unit-less) measure that is some-
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how easy to interpret with no domain-specific knowledge of the modelled problem.
Namely, the (unadjusted) 𝑅2 score (the coefficient of determination) is given by:

𝑅2(𝑓 ) = 1 −
∑𝑛

𝑖=1 (𝑦𝑖 − 𝑓 (𝐱𝑖,⋅))2

∑𝑛
𝑖=1 (𝑦𝑖 − ̄𝑦)2 ,

where ̄𝑦 is the arithmetic mean 1
𝑛 ∑𝑛

𝑖=1 𝑦𝑖.
(r12 <- summary(f12)$r.squared)

## [1] 0.93909

1 - sum(f12$residuals^2)/sum((Y-mean(Y))^2) # the same

## [1] 0.93909

(r1 <- summary(f1)$r.squared)

## [1] 0.63751

(r2 <- summary(f2)$r.squared)

## [1] 0.68998

The coefficient of determination gives the proportion of variance of the dependent
variable explained by independent variables in themodel;𝑅2(𝑓 ) ≃ 1 indicates a per-
fect fit.The firstmodel is a very good one, the simplemodels are “more or less okay”.

Unfortunately, 𝑅2 tends to automatically increase as the number of independent
variables increase (recall that the more variables in the model, the better the SSR
must be). To correct for this phenomenon, we sometimes consider the adjusted𝑅2:

�̄�2(𝑓 ) = 1 − (1 − 𝑅2(𝑓 )) 𝑛 − 1
𝑛 − 𝑝 − 1

summary(f12)$adj.r.squared

## [1] 0.93869

n <- length(x); 1 - (1 - r12)*(n-1)/(n-3) # the same

## [1] 0.93869

summary(f1)$adj.r.squared

## [1] 0.63633

summary(f2)$adj.r.squared

## [1] 0.68897

In other words, the adjusted 𝑅2 penalises for more complex models.
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Remark. (*) Side note – results of some statistical tests (e.g., significance of coeffi-
cients) are reported by calling summary(f12) etc.— refer to amore advanced source
to obtain more information. These, however, require the verification of some as-
sumptions regarding the input data and the residuals.

summary(f12)

##

## Call:

## lm(formula = Y ~ X1 + X2)

##

## Residuals:

## Min 1Q Median 3Q Max

## -108.10 -1.94 7.81 20.25 50.62

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## (Intercept) 1.73e+02 3.95e+00 43.7 <2e-16 ***

## X1 1.83e-01 5.16e-03 35.4 <2e-16 ***

## X2 2.20e+00 5.64e-02 39.0 <2e-16 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 34.2 on 307 degrees of freedom

## Multiple R-squared: 0.939, Adjusted R-squared: 0.939

## F-statistic: 2.37e+03 on 2 and 307 DF, p-value: <2e-16

2.3.1.4 Residuals vs. Fitted Plot

Wecan also create scatter plots of the residuals (predicted ̂𝑦𝑖 minus true 𝑦𝑖) as a func-
tion of the predicted ̂𝑦𝑖 = 𝑓 (𝐱𝑖,⋅), see Figure 2.9.
Y_pred12 <- f12$fitted.values # predict(f12, data.frame(X1, X2))

Y_pred1 <- f1$fitted.values # predict(f1, data.frame(X1))

Y_pred2 <- f2$fitted.values # predict(f2, data.frame(X2))

par(mfrow=c(1, 3))

plot(Y_pred12, Y_pred12-Y)

plot(Y_pred1, Y_pred1 -Y)

plot(Y_pred2, Y_pred2 -Y)

Ideally (provided that the hypothesis that the dependent variable is indeed a linear
function of the dependent variable(s) is true), we would expect to see a point cloud
that spread around 0 in a very much unorderly fashion.
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Figure 2.9: Residuals vs. fitted outputs for the three regressionmodels

2.3.2 Variable Selection
Okay, up tonowwe’ve been considering theproblemofmodelling the Rating variable
as a function of Balance and/or Income. However, it the Credit data set there are
other variables possibly worth inspecting.

Consider all quantitative (numeric-continuous) variables in the Credit data set.
C <- Credit[Credit$Balance>0,

c("Rating", "Limit", "Income", "Age",

"Education", "Balance")]

head(C)

## Rating Limit Income Age Education Balance

## 1 283 3606 14.891 34 11 333

## 2 483 6645 106.025 82 15 903

## 3 514 7075 104.593 71 11 580

## 4 681 9504 148.924 36 11 964

## 5 357 4897 55.882 68 16 331

## 6 569 8047 80.180 77 10 1151

Obviously there aremany possible combinations of the variables uponwhich regres-
sion models can be constructed (precisely, for 𝑝 variables there are 2𝑝 such models).
How do we choose the best set of inputs?

Remark. We should already be suspicious at this point: wait… best requires some
sort of criterion, right?
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First, however, let’s draw a matrix of scatter plots for every pair of variables – so as
to get an impression of how individual variables interact with each other, see Figure
2.10.
pairs(C)
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Figure 2.10: Scatter plot matrix for the Credit dataset

It seems like Rating depends on Limit almost linearly… We have a tool to actually
quantify the degree of linear dependence between a pair of variables – Pearson’s 𝑟 –
the linear correlation coefficient:

𝑟(𝒙, 𝒚) =
∑𝑛

𝑖=1(𝑥𝑖 − ̄𝑥)(𝑦𝑖 − ̄𝑦)
√∑𝑛

𝑖=1(𝑥𝑖 − ̄𝑥)2√∑𝑛
𝑖=1(𝑦𝑖 − ̄𝑦)2

.

It holds 𝑟 ∈ [−1, 1], where:
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• 𝑟 = 1 – positive linear dependence (𝑦 increases as 𝑥 increases)
• 𝑟 = −1 – negative linear dependence (𝑦 decreases as 𝑥 increases)
• 𝑟 ≃ 0 – uncorrelated or non-linearly dependent

Figure 2.11 gives an illustration of the above.

r=0.98
positive correlation

r=-0.97
negative correlation

r=0.03
no correlation

r=-0.08
non-linear correlation

Figure 2.11: Different datasets and the corresponding Pearson’s 𝑟 coefficients

To compute Pearson’s 𝑟 between all pairs of variables, we call:
round(cor(C), 3)

## Rating Limit Income Age Education Balance

## Rating 1.000 0.996 0.831 0.167 -0.040 0.798

## Limit 0.996 1.000 0.834 0.164 -0.032 0.796

## Income 0.831 0.834 1.000 0.227 -0.033 0.414

## Age 0.167 0.164 0.227 1.000 0.024 0.008

## Education -0.040 -0.032 -0.033 0.024 1.000 0.001
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## Balance 0.798 0.796 0.414 0.008 0.001 1.000

Rating and Limit are almost perfectly linearly correlated, and both seem to describe
the same thing.

For practical purposes, we’d rather model Rating as a function of the other vari-
ables. For simple linear regression models, we’d choose either Income or Balance.
How about multiple regression though?

The best model:

• has high predictive power,
• is simple.

These two criteria are often mutually exclusive.

Which variables should be included in the optimal model?

Again, the definition of the “best” object needs a fitness function.

For fitting a single model to data, we use the SSR.

We need a metric that takes the number of dependent variables into account.

Remark. (*) Unfortunately, the adjusted𝑅2, despite its interpretability, is not really
suitable for this task. It does not penalise complex models heavily enough to be
really useful.

Here we’ll be using the Akaike Information Criterion (AIC).

For a model 𝑓 with 𝑝′ independent variables:

AIC(𝑓 ) = 2(𝑝′ + 1) + 𝑛 log(SSR(𝑓 )) − 𝑛 log𝑛

Our task is to find the combination of independent variables thatminimises the AIC.

Remark. (**)Note that this is abi-level optimisationproblem–for every considered
combination of variables (which we look for), we must solve another problem of
finding the best model involving these variables – the one that minimises the SSR.

min
𝑠1,𝑠2,…,𝑠𝑝∈{0,1}

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 ⎛⎜⎜
⎝

𝑝
∑
𝑗=1

𝑠𝑗 + 1⎞⎟⎟
⎠

+

𝑛 log⎛⎜
⎝

min
𝛽0,𝛽1,…,𝛽𝑝∈ℝ

𝑛
∑
𝑖=1

(𝛽0 + 𝑠1𝛽1𝑥𝑖,1 + ⋯ + 𝑠𝑝𝛽𝑝𝑥𝑖,𝑝 − 𝑦𝑖)
2⎞⎟
⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

We dropped the 𝑛 log𝑛 term, because it is always constant and hence doesn’t af-
fect the solution. If 𝑠𝑗 = 0, then the 𝑠𝑗𝛽𝑗𝑥𝑖,𝑗 term is equal to 0, and hence is not
considered in the model. This plays the role of including 𝑠𝑗 = 1 or omitting 𝑠𝑗 = 0
the 𝑗-th variable in the model building exercise.
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For 𝑝 variables, the number of their possible combinations is equal to 2𝑝 (grows ex-
ponentially with 𝑝). For large 𝑝 (think big data), an extensive search is impractical (in
our case we could get away with this though – left as an exercise to a slightly more
advanced reader). Therefore, to find the variable combination minimising the AIC,
we often rely on one of the two following greedy heuristics:

• forward selection:

1. start with an empty model
2. find an independent variable whose addition to the current model

would yield the highest decrease in the AIC and add it to the model
3. go to step 2 until AIC decreases

• backward elimination:

1. start with the full model
2. find an independent variable whose removal from the current model

would decrease the AIC the most and eliminate it from the model
3. go to step 2 until AIC decreases

Remark. (**) The above bi-level optimisation problem can be solved by implement-
ing a genetic algorithm – see further chapter for more details.

Remark. (*)There are of coursemanyothermethodswhich also performsome form
of variable selection, e.g., lasso regression. But these minimise a different object-
ive.

First, a forward selection example. We need a data sample to work with:
C <- Credit[Credit$Balance>0,

c("Rating", "Income", "Age",

"Education", "Balance")]

Then, a formula that represents a model with no variables (model from which we’ll
start our search):
(model_empty <- Rating~1)

## Rating ~ 1

Last, we need amodel that includes all the variables.We’re too lazy to list all of them
manually, therefore, we can use the model.frame() function to generate a corres-
ponding formula:
(model_full <- formula(model.frame(Rating~., data=C))) # all variables

## Rating ~ Income + Age + Education + Balance

Nowwe are ready.
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step(lm(model_empty, data=C), # starting model

scope=model_full, # gives variables to consider

direction="forward")

## Start: AIC=3055.8

## Rating ~ 1

##

## Df Sum of Sq RSS AIC

## + Income 1 4058342 1823473 2695

## + Balance 1 3749707 2132108 2743

## + Age 1 164567 5717248 3049

## <none> 5881815 3056

## + Education 1 9631 5872184 3057

##

## Step: AIC=2694.7

## Rating ~ Income

##

## Df Sum of Sq RSS AIC

## + Balance 1 1465212 358261 2192

## <none> 1823473 2695

## + Age 1 2836 1820637 2696

## + Education 1 1063 1822410 2697

##

## Step: AIC=2192.3

## Rating ~ Income + Balance

##

## Df Sum of Sq RSS AIC

## + Age 1 4119 354141 2191

## + Education 1 2692 355568 2192

## <none> 358261 2192

##

## Step: AIC=2190.7

## Rating ~ Income + Balance + Age

##

## Df Sum of Sq RSS AIC

## + Education 1 2926 351216 2190

## <none> 354141 2191

##

## Step: AIC=2190.1

## Rating ~ Income + Balance + Age + Education

##

## Call:

## lm(formula = Rating ~ Income + Balance + Age + Education, data = C)

##
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## Coefficients:

## (Intercept) Income Balance Age Education

## 173.830 2.167 0.184 0.223 -0.960

formula(lm(Rating~., data=C))

## Rating ~ Income + Age + Education + Balance

The full model has been selected.

And now for something completely different – a backward elimination example:
step(lm(model_full, data=C), # from

scope=model_empty, # to

direction="backward")

## Start: AIC=2190.1

## Rating ~ Income + Age + Education + Balance

##

## Df Sum of Sq RSS AIC

## <none> 351216 2190

## - Education 1 2926 354141 2191

## - Age 1 4353 355568 2192

## - Balance 1 1468466 1819682 2698

## - Income 1 1617191 1968406 2722

##

## Call:

## lm(formula = Rating ~ Income + Age + Education + Balance, data = C)

##

## Coefficients:

## (Intercept) Income Age Education Balance

## 173.830 2.167 0.223 -0.960 0.184

The full model is considered the best again.

Forward selection example – full dataset:
C <- Credit[, # do not restrict to Credit$Balance>0

c("Rating", "Income", "Age",

"Education", "Balance")]

step(lm(model_empty, data=C),

scope=model_full,

direction="forward")

## Start: AIC=4034.3

## Rating ~ 1

##
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## Df Sum of Sq RSS AIC

## + Balance 1 7124258 2427627 3488

## + Income 1 5982140 3569744 3643

## + Age 1 101661 9450224 4032

## <none> 9551885 4034

## + Education 1 8675 9543210 4036

##

## Step: AIC=3488.4

## Rating ~ Balance

##

## Df Sum of Sq RSS AIC

## + Income 1 1859749 567878 2909

## + Age 1 98562 2329065 3474

## <none> 2427627 3488

## + Education 1 5130 2422497 3490

##

## Step: AIC=2909.3

## Rating ~ Balance + Income

##

## Df Sum of Sq RSS AIC

## <none> 567878 2909

## + Age 1 2142 565735 2910

## + Education 1 1209 566669 2910

##

## Call:

## lm(formula = Rating ~ Balance + Income, data = C)

##

## Coefficients:

## (Intercept) Balance Income

## 145.351 0.213 2.186

This procedure suggests including only the Balance and Income variables.

Backward elimination example – full dataset:
step(lm(model_full, data=C), # full model

scope=model_empty, # empty model

direction="backward")

## Start: AIC=2910.9

## Rating ~ Income + Age + Education + Balance

##

## Df Sum of Sq RSS AIC

## - Education 1 1238 565735 2910

## - Age 1 2172 566669 2910

## <none> 564497 2911
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## - Income 1 1759273 2323770 3475

## - Balance 1 2992164 3556661 3645

##

## Step: AIC=2909.8

## Rating ~ Income + Age + Balance

##

## Df Sum of Sq RSS AIC

## - Age 1 2142 567878 2909

## <none> 565735 2910

## - Income 1 1763329 2329065 3474

## - Balance 1 2991523 3557259 3643

##

## Step: AIC=2909.3

## Rating ~ Income + Balance

##

## Df Sum of Sq RSS AIC

## <none> 567878 2909

## - Income 1 1859749 2427627 3488

## - Balance 1 3001866 3569744 3643

##

## Call:

## lm(formula = Rating ~ Income + Balance, data = C)

##

## Coefficients:

## (Intercept) Income Balance

## 145.351 2.186 0.213

This procedure gives the same results as forward selection (however, for other data
sets this might not necessarily be the case).

2.3.3 Variable Transformation
So far we have been fitting linear models of the form:

𝑌 = 𝛽0 + 𝛽1𝑋1 + ⋯ + 𝛽𝑝𝑋𝑝.

What about some non-linear models such as polynomials etc.? For example:

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2
1 + 𝛽3𝑋3

1 + 𝛽4𝑋2.

Solution: pre-process inputs by setting 𝑋′
1 ∶= 𝑋1, 𝑋′

2 ∶= 𝑋2
1 , 𝑋′

3 ∶= 𝑋3
1 , 𝑋′

4 ∶= 𝑋2
and fit a linear model:

𝑌 = 𝛽0 + 𝛽1𝑋′
1 + 𝛽2𝑋′

2 + 𝛽3𝑋′
3 + 𝛽4𝑋′

4.
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This trick works for every model of the form 𝑌 = ∑𝑘
𝑖=1 ∑𝑝

𝑗=1 𝜑𝑖,𝑗(𝑋𝑗) for any 𝑘 and
any univariate functions 𝜑𝑖,𝑗.

Also, with a little creativity (and maths), we might be able to transform a few other
models to a linear one, e.g.,

𝑌 = 𝑏𝑒𝑎𝑋 → log𝑌 = log 𝑏 + 𝑎𝑋 → 𝑌′ = 𝑎𝑋 + 𝑏′

This is an example of a model’s linearisation. However, not every model can be lin-
earised. In particular, one that involves functions that are not invertible.

For example, here’s a series of simple (𝑝 = 1) degree-𝑑 polynomial regressionmodels
of the form:

𝑌 = 𝛽0 + 𝛽1𝑋 + 𝛽2𝑋2 + 𝛽3𝑋3 + ⋯ + 𝛽𝑑𝑋𝑑.

Such models can be fitted with the lm() function based on the formula of the form
Y~poly(X, d, raw=TRUE) or Y~X+I(X^2)+I(X^3)+...
f1_1 <- lm(Y~X1)

f1_3 <- lm(Y~X1+I(X1^2)+I(X1^3)) # also: Y~poly(X1, 3, raw=TRUE)

f1_10 <- lm(Y~poly(X1, 10, raw=TRUE))

Above we have fitted the polynomials of degrees 1, 3 and 10. Note that a polynomial
of degree 1 is just a line.

Let us depict the three models:
plot(X1, Y, col="#000000aa", ylim=c(0, 1100))

x <- seq(min(X1), max(X1), length.out=101)

lines(x, predict(f1_1, data.frame(X1=x)), col="red", lwd=3)

lines(x, predict(f1_3, data.frame(X1=x)), col="blue", lwd=3)

lines(x, predict(f1_10, data.frame(X1=x)), col="darkgreen", lwd=3)

FromFigure 2.12we see that there’s clearly a problemwith the degree-10 polynomial.

2.3.4 Predictive vs. Descriptive Power
The above high-degree polynomial model (f1_10) is a typical instance of a phe-
nomenon called an overfit.

Clearly (based on our expert knowledge), the Rating shouldn’t decrease as Balance
increases.

In other words, f1_10 gives a better fit to data actually observed, but fails to produce
good results for the points that are yet to come.

We say that it generalises poorly to unseen data.

Assume our true model is of the form:
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Figure 2.12: Polynomials of different degrees fitted to the Credit dataset

true_model <- function(x) 3*x^3+5

Let’s generate the following randomsample fromthismodel (with𝑌 subject to error),
see Figure 2.13:
set.seed(1234) # to assure reproducibility

n <- 25

X <- runif(n, min=0, max=1)

Y <- true_model(X)+rnorm(n, sd=0.2) # add normally-distributed noise

plot(X, Y)

x <- seq(0, 1, length.out=101)

lines(x, true_model(x), col=2, lwd=3, lty=2)

Let’s fit polynomials of different degrees, see Figure 2.14.
plot(X, Y)

lines(x, true_model(x), col=2, lwd=3, lty=2)

dmax <- 11 # maximal polynomial degree

MSE_train <- numeric(dmax)

MSE_test <- numeric(dmax)

for (d in 1:dmax) { # for every polynomial degree

f <- lm(Y~poly(X, d, raw=TRUE)) # fit a d-degree polynomial

y <- predict(f, data.frame(X=x))

lines(x, y, col=d)

# MSE on given random X,Y:
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Figure 2.13: Synthetic data generated bymeans of the formula𝑌 = 3𝑥3 +5 (+ noise)

MSE_train[d] <- mean(f$residuals^2)

# MSE on many more points:

MSE_test[d] <- mean((y-true_model(x))^2)

}
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Figure 2.14: Polynomials fitted to our synthetic dataset

Some of the polynomials are fitted too well!
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Remark (*) The oscillation of the high-degree polynomials at the domain boundar-
ies is known as the Runge phenomenon.

Compare the mean squared error (MSE) for the observed vs. future data points, see
Figure 2.15.
matplot(1:dmax, cbind(MSE_train, MSE_test), type="b",

ylim=c(1e-3, 2e3), log="y", pch=1:2,

xlab="Model complexity (polynomial degree)",

ylab="MSE")

legend("topleft", legend=c("MSE on original data", "MSE on the whole range"),

lty=1:2, col=1:2, pch=1:2, bg="white")
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Figure 2.15: MSE on the dataset used to construct the model vs. MSE on a whole
range of points as function of the polynomial degree

Note the logarithmic scale on the 𝑦 axis.

This is a very typical behaviour!

• A model’s fit to observed data improves as the model’s complexity increases.

• A model’s generalisation to unseen data initially improves, but then becomes
worse.

• In the above example, the sweet spot is at a polynomial of degree 3, which is exactly
our true underlying model.

Hence, most oftenwe should be interested in the accuracy of the predictionsmade
in the case of unobserved data.

Ifwehave a data set of a considerable size,we candivide it (randomly) into twoparts:
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• training sample (say, 60% or 80%) – used to fit a model
• test sample (the remaining 40% or 20%) – used to assess its quality (e.g., usingMSE)

More on this issue in the chapter on Classification.

Remark. (*)We shall see that sometimes a train-test-validate split will be necessary,
e.g., 60-20-20%.

2.4 Exercises in R
2.4.1 Anscombe’s Quartet Revisited
Consider the anscombe database once again:
print(anscombe) # `anscombe` is a built-in object

## x1 x2 x3 x4 y1 y2 y3 y4

## 1 10 10 10 8 8.04 9.14 7.46 6.58

## 2 8 8 8 8 6.95 8.14 6.77 5.76

## 3 13 13 13 8 7.58 8.74 12.74 7.71

## 4 9 9 9 8 8.81 8.77 7.11 8.84

## 5 11 11 11 8 8.33 9.26 7.81 8.47

## 6 14 14 14 8 9.96 8.10 8.84 7.04

## 7 6 6 6 8 7.24 6.13 6.08 5.25

## 8 4 4 4 19 4.26 3.10 5.39 12.50

## 9 12 12 12 8 10.84 9.13 8.15 5.56

## 10 7 7 7 8 4.82 7.26 6.42 7.91

## 11 5 5 5 8 5.68 4.74 5.73 6.89

Recall that in the previousChapterwe have split the above data into four data frames
ans1, …, ans4with columns x and y.

Exercise 2.2 In ans1, fit a regression line to the data set as-is.

Solution.

We’ve done that already, see Figure 2.16.What awonderful exercise, thank you – effective learn-
ing is often done by repeating stuff.
ans1 <- data.frame(x=anscombe$x1, y=anscombe$y1)

f1 <- lm(y~x, data=ans1)

plot(ans1$x, ans1$y)

abline(f1, col="red")

■
Exercise 2.3 In ans2, fit a quadratic model (𝑦 = 𝑎 + 𝑏𝑥 + 𝑐𝑥2).
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Figure 2.16: Fitted regression line for ans1

Solution.

How to fit a polynomial model is explained above.
ans2 <- data.frame(x=anscombe$x2, y=anscombe$y2)

f2 <- lm(y~x+I(x^2), data=ans2)

plot(ans2$x, ans2$y)

x_plot <- seq(4, 14, by=0.1)

y_plot <- predict(f2, data.frame(x=x_plot))

lines(x_plot, y_plot, col="red")

Comment: FromFigure 2.17 we see that it’s an almost-perfect fit! Clearly, the second
Anscombe dataset isn’t a case of linearly dependent variables.

■
Exercise 2.4 In ans3, remove the obvious outlier from data and fit a regression line.

Solution.

Let’s plot the data set first, see Figure 2.18.
ans3 <- data.frame(x=anscombe$x3, y=anscombe$y3)

plot(ans3$x, ans3$y)

Indeed, the observation at 𝑥 ≃ 13 is an obvious outlier. Perhaps the easiest way to remove it is
to call:
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Figure 2.17: Fitted quadratic model for ans2
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Figure 2.18: Scatter plot for ans3
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ans3b <- ans3[ans3$y<=12,] # the outlier is definitely at y>12

We could also use the condition y < max(y), amongst others.

Now let’s fit the linear model:
f3b <- lm(y~x, data=ans3b)

plot(ans3b$x, ans3b$y)

abline(f3b, col="red")
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Figure 2.19: Scatter plot for ans3with the outlier removed and thefitted linearmodel

Comment: Now Figure 2.19 is what we call linearly correlated data. By the way, Pear-
son’s coefficient now equals 1.

■

2.4.2 Countries of theWorld – Simplemodels involving theGDPper cap-
ita

Let’s consider the World Factbook 2020 dataset (see this book’s datasets folder). It
consists of country names, their population, area, GDP,mortality rates etc.We have
scraped it from the CIA website at https://www.cia.gov/library/publications/the-
world-factbook/docs/rankorderguide.html and compiled into a single file on 3 April
2020.
factbook <- read.csv("datasets/world_factbook_2020.csv",

comment.char="#")

Here is a preview of a few features for 3 selected countries (see help("%in%")):

https://www.cia.gov/library/publications/the-world-factbook/docs/rankorderguide.html
https://www.cia.gov/library/publications/the-world-factbook/docs/rankorderguide.html
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factbook[factbook$country %in%

c("Australia", "New Zealand", "United States"),

c("country", "area", "population", "gdp_per_capita_ppp")]

## country area population gdp_per_capita_ppp

## 15 Australia 7741220 25466459 50400

## 169 New Zealand 268838 4925477 39000

## 247 United States 9833517 332639102 59800

Exercise 2.5 List the 10 countries with the highest GDP per capita.

Solution.

To recall, to generate a list of indexes that produce an ordered version of a numeric vector, we
need to call the order() function.
which_top <- tail(order(factbook$gdp_per_capita_ppp, na.last=FALSE), 10)

factbook[which_top, c("country", "gdp_per_capita_ppp")]

## country gdp_per_capita_ppp

## 113 Ireland 73200

## 35 Brunei 78900

## 114 Isle of Man 84600

## 211 Singapore 94100

## 26 Bermuda 99400

## 141 Luxembourg 105100

## 157 Monaco 115700

## 142 Macau 122000

## 192 Qatar 124100

## 139 Liechtenstein 139100

By the way, the reported values are in USD.

Question: Which of these countries are tax havens?

■
Exercise 2.6 Find the 5 most positively and the 5 most negatively correlated variables with
the gdp_per_capita_ppp feature (of course, with respect to the Pearson coefficient).

Solution.

This can be solved via a call to cor(). Note that we need to make sure that missing vales are
omitted fromcomputations.Aquick glimpseat themanual page (?cor) reveals that computing
the correlationbetweena columnandall the other ones (of course, exceptcountry,which is non-
numeric) can be performed as follows.
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r <- cor(factbook$gdp_per_capita_ppp,

factbook[,!(names(factbook) %in% c("country", "gdp_per_capita_ppp"))],

use="complete.obs")[1,]

or <- order(r) # ordering permutation (indexes)

r[head(or, 5)] # first 5 ordered indexes

## infant_mortality_rate maternal_mortality_rate birth_rate

## -0.74658 -0.67005 -0.60822

## death_rate total_fertility_rate

## -0.57216 -0.56725

r[tail(or, 5)] # last 5 ordered indexes

## natural_gas_production gross_national_saving

## 0.56898 0.61133

## median_age obesity_adult_prevalence_rate

## 0.62090 0.63681

## life_expectancy_at_birth

## 0.75461

Comment: “Live long andprosper” just gainedanewmeaning.Richer countries have
lower infant and maternal mortality rates, lower birth rates, but higher life expect-
ancy and obesity prevalence. Note, however, that correlation is not causation: we are
unlikely to increase the GDP by asking people to put on weight.

■
Exercise 2.7 Fit simple regression models where the per capita GDP explains its four most
correlated variables (four individual models). Draw them on a scatter plot. Compute the root
mean squared errors (RMSE), mean absolute errors (MAE) and the coefficients of determina-
tion (𝑅2).

Solution.

The fourmost correlated variables (we should look at the absolute value of the correlation coeffi-
cient now – recall that it is the correlation of 0 that means no linear dependence; 1 and -1 show
a strong association between a pair of variables) are:
(most_correlated <- names(r)[tail(order(abs(r)), 4)])

## [1] "obesity_adult_prevalence_rate" "maternal_mortality_rate"

## [3] "infant_mortality_rate" "life_expectancy_at_birth"

We could take the above column names and construct four formulas manually, e.g., by writ-
ing gdp_per_capita_ppp~life_expectancy_at_birth, but we are lazy. Being lazy when it
comes to computer programming is often a virtue, not a flaw in one’s character.

Instead, we will run a for loop that extracts the pairs of interesting columns and constructs a
formula based on two vectors (lm(Y~X)), see Figure 2.20.
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par(mfrow=c(2, 2)) # 4 plots on a 2x2 grid

for (i in 1:4) {

print(most_correlated[i])

X <- factbook[,"gdp_per_capita_ppp"]

Y <- factbook[,most_correlated[i]]

f <- lm(Y~X)

print(cbind(RMSE=sqrt(mean(f$residuals^2)),

MAE=mean(abs(f$residuals)),

R2=summary(f)$r.squared))

plot(X, Y, xlab="gdp_per_capita_ppp",

ylab=most_correlated[i])

abline(f, col="red")

}

## [1] "obesity_adult_prevalence_rate"

## RMSE MAE R2

## [1,] 11.041 8.1589 0.062196

## [1] "maternal_mortality_rate"

## RMSE MAE R2

## [1,] 204.93 146.53 0.21481

## [1] "infant_mortality_rate"

## RMSE MAE R2

## [1,] 15.746 12.166 0.3005

## [1] "life_expectancy_at_birth"

## RMSE MAE R2

## [1,] 5.4292 4.3727 0.43096

Recall that the rootmean squared error is the square root of the arithmeticmean of the squared
residuals. Mean absolute error is the average of the absolute values of the residuals. The coeffi-

cient of determination is given by:𝑅2(𝑓 ) = 1 − ∑𝑛
𝑖=1(𝑦𝑖−𝑓 (𝐱𝑖,⋅))2

∑𝑛
𝑖=1(𝑦𝑖− ̄𝑦)2 .

Comment: Unfortunately, we were misled by the high correlation coefficients
between the 𝑋s and 𝑌s: the low actual 𝑅2 scores indicate that these models should
not be deemed trustworthy. Note that 3 of the plots are evidently L-shaped.

Fun fact: (*) Interestingly, it can be shown that 𝑅2 (in the case of the linear models
fitted by minimising the SSR) is the square of the correlation between the true 𝑌s
and the predicted 𝑌s:
X <- factbook[,"gdp_per_capita_ppp"]

Y <- factbook[,most_correlated[i]]

f <- lm(Y~X, y=TRUE)

print(summary(f)$r.squared)

## [1] 0.43096



Multiple Regression 61

0 20000 60000 100000 140000

0
10

20
30

40
50

60

gdp_per_capita_ppp

ob
es

ity
_a

du
lt_

pr
ev

al
en

ce
_r

at
e

0 20000 60000 100000 140000

0
20

0
40

0
60

0
80

0
10

00

gdp_per_capita_ppp
m

at
er

na
l_

m
or

ta
lit

y_
ra

te

0 20000 60000 100000 140000

0
20

40
60

80
10

0

gdp_per_capita_ppp

in
fa

nt
_m

or
ta

lit
y_

ra
te

0 20000 60000 100000 140000

60
70

80
90

gdp_per_capita_ppp

lif
e_

ex
pe

ct
an

cy
_a

t_
bi

rt
h

Figure 2.20: A scatter plot matrix and regression lines for the 4 variables most cor-
related with the per capita GDP

print(cor(f$fitted.values, f$y)^2)

## [1] 0.43096

Side note: Donote that RMSEandMAEare interpretable: for instance, average error
of life expectancy prediction based on the GDP is 4-5 years. Recall that you can find
the information on the variables’ units of measure at https://www.cia.gov/library/
publications/the-world-factbook/docs/rankorderguide.html.

■

https://www.cia.gov/library/publications/the-world-factbook/docs/rankorderguide.html
https://www.cia.gov/library/publications/the-world-factbook/docs/rankorderguide.html
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2.4.3 Countries of theWorld –Most correlated variables (*)
Let’s get back to theWorld Factbook 2020 dataset (world_factbook_2020.csv).
factbook <- read.csv("datasets/world_factbook_2020.csv",

comment.char="#")

Exercise 2.8 Create a data frame Cwith three columns named col1, col2 and r and 𝑝(𝑝 −
1)/2 rows,where𝑝 is the number of numeric features in factbook. Every row should represent
a unique pair of column names in factbook (we do not distinguish between a,b and b,a) of
correlation coefficients between them.

Solution.

First we will solve this exercise considering only 4 numeric features in our dataset, so that we
can keep track of how the R expressions we evaluate actually work.

Let us compute the Pearson coefficients between chosen pairs of variables.
R <- cor(factbook[,c("area", "median_age", "birth_rate", "exports")],

use="complete.obs") # 4 selected columns

print(R)

## area median_age birth_rate exports

## area 1.000000 0.044524 -0.031995 0.49259

## median_age 0.044524 1.000000 -0.921592 0.29973

## birth_rate -0.031995 -0.921592 1.000000 -0.24296

## exports 0.492586 0.299727 -0.242955 1.00000

Note that the R matrix has 1.0 on the diagonal (where each entry represents a correlation
between a variable and itself). Moreover, it is symmetric around the diagonal – R[i,j] ==

R[j,i], because it is the correlation between the same pair of variables. Hence, from now on
we may be interested in the elements below the diagonal. We can get access to them by using
lower.tri() (“lower triangle”).
R[lower.tri(R)]

## [1] 0.044524 -0.031995 0.492586 -0.921592 0.299727 -0.242955

This is already the 3rd column of the data frame we are asked to generate, which should look
like:

## col1 col2 r

## 1 median_age area 0.044524

## 2 birth_rate area -0.031995

## 3 exports area 0.492586

## 4 birth_rate median_age -0.921592

## 5 exports median_age 0.299727

## 6 exports birth_rate -0.242955
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How the generate col1 and col2? One idea is to take the “lower triangles” of the following
matrices:

## [,1] [,2] [,3] [,4]

## [1,] "area" "area" "area" "area"

## [2,] "median_age" "median_age" "median_age" "median_age"

## [3,] "birth_rate" "birth_rate" "birth_rate" "birth_rate"

## [4,] "exports" "exports" "exports" "exports"

and:

## [,1] [,2] [,3] [,4]

## [1,] "area" "median_age" "birth_rate" "exports"

## [2,] "area" "median_age" "birth_rate" "exports"

## [3,] "area" "median_age" "birth_rate" "exports"

## [4,] "area" "median_age" "birth_rate" "exports"

Here is a complete solution for all the features is factbook:
R <- cor(factbook[,-1], use="complete.obs") # skip the `country` column

rrr <- matrix(dimnames(R)[[1]], nrow=nrow(R), ncol=ncol(R))

ccc <- matrix(dimnames(R)[[2]], byrow=TRUE, nrow=nrow(R), ncol=ncol(R))

C <- data.frame(col1=rrr[lower.tri(rrr)],

col2=ccc[lower.tri(ccc)],

r=R[lower.tri(R)])

Comment: In “classical” programming languages we would perhaps have used of a
double (nested) for loop here (a less readable solution).

■
Exercise 2.9 Find the 5most correlated pairs of variables.

Solution.

This canbe done by ordering the rows ofC in decreasing order of absolute values of C$r, and then
choosing the first 5 rows.
C_top <- head(C[order(abs(C$r), decreasing=TRUE),], 5)

knitr::kable(C_top)

col1 col2 r

1687 electricity_installed_generating_capacity electricity_production 0.99942
1684 electricity_consumption electricity_production 0.99921
88 labor_force population 0.99862
1718 electricity_installed_generating_capacity electricity_consumption 0.99815
1300 telephones_mobile_cellular labor_force 0.99793
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Comment:Themost correlated pairs of features are not really “mind-blowing”…

■
Exercise 2.10 Fit simple regressionmodels for the most correlated pair of variables.

Solution.

There is a degree of ambiguity here: should col1 or rather col2 be treated as the dependent
variable in ourmodel? Let’s do it either way.

To learn something new, which is exactly why we are all here, we will create the formulas pro-
grammatically, by first concatenating (joining) appropriate strings (note that in order to input
a double quotes character, we need to proceed in with a backslash), and then calling the for-
mula() function.
form <- formula(paste(C_top[1,2], "~", C_top[1,1]))

f <- lm(form, data=factbook)

print(f)

##

## Call:

## lm(formula = form, data = factbook)

##

## Coefficients:

## (Intercept)

## 7.95e+08

## electricity_installed_generating_capacity

## 3.63e+03

plot(factbook[,C_top[1,1]], factbook[,C_top[1,2]],

xlab=C_top[1,1], ylab=C_top[1,2])

abline(f, col="red")

Figure 2.21 depicts the fittedmodel.

■

2.4.4 Countries of theWorld – A non-linearmodel based on the GDP per
capita

Let’s revisit theWorld Factbook 2020 dataset (world_factbook_2020.csv).
factbook <- read.csv("datasets/world_factbook_2020.csv",

comment.char="#")

Exercise 2.11 Draw a histogram of the empirical distribution of the GDP per capita.
Moreover, draw a histogram of the logarithm of the GDP/person.
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Figure 2.21: Most correlated pair of variables and the invisible regression line

Solution.
par(mfrow=c(1,2))

hist(factbook$gdp_per_capita_ppp, col="white", main=NA)

hist(log(factbook$gdp_per_capita_ppp), col="white", main=NA)
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Figure 2.22: Histograms of the empirical distribution of the GDP per capita with
linear (left) and log (right) scale on the X axis
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Comment: In Figure 2.22 we see that distribution of the GDP is right-skewed: most
countries have small GDP. However, few of them (those in the “right tail” of the dis-
tribution) are very very rich (hey, how about taxing the richest countries?!). There is
the famous observation made by V. Pareto stating that most assets are in the hands
of the “wealthy minority” (compare: power law, rich-get-richer rule, preferential at-
tachment in complexnetworks). Interestingly,many real-world-phenomena are dis-
tributed similarly (e.g., the popularity of web pages, the number of followers of Ins-
tagram profiles). It is frequently the case that the logarithm of the aforementioned
variable looks more “normal” (is bell-shaped).

Side note: “The” logarithm most often refers to the logarithm base 𝑒, log 𝑥 = log𝑒 𝑥,
where 𝑒 ≃ 2.72 is theEuler constant, see exp(1) inR.Note that you canonly compute
logarithms of positive real numbers.

Non-technical audience might be confused when asked to contemplate the distribution of the
logarithm of a variable. Let’s make it more user-friendly (on the other hand, we could’ve asked
them to harden up…) by nicely re-labelling the X axis, see Figure 2.23.
hist(log(factbook$gdp_per_capita_ppp), axes=FALSE,

xlab="GDP per capita (thousands USD)", main=NA, col="white")

box()

axis(2) # Y axis

at <- c(1000, 2000, 5000, 10000, 20000, 50000, 100000, 200000)

axis(1, at=log(at), labels=at/1000)
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Figure 2.23: Histogramof the empirical distribution of theGDPper capita nowwith
human-readable X axis labels (not the logarithmic scale)
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Comment: This is still a plot of the logarithm of the distribution of the per capita
GDP, but it’s somehow “hidden” behind the human-readable axis labels. Nice.

■
Exercise 2.12 Fit a simple linear model of life_expectancy_at_birth as a function of
gdp_per_capita_ppp.

Solution.

Easy.We have already done than in one of the previous exercises. Yet, to learn something new,
let’s note that the plot() function accepts formulas as well.
f <- lm(life_expectancy_at_birth~gdp_per_capita_ppp, data=factbook)

plot(life_expectancy_at_birth~gdp_per_capita_ppp, data=factbook)

abline(f, col="purple")

summary(f)$r.squared

## [1] 0.43096
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Figure 2.24: Linear model fitted for life expectancy vs. GDP/person

Comment: From Figure 2.24 we see that this is not a goodmodel.

■
Exercise 2.13 Draw a scatter plot of life_expectancy_at_birth as a function
gdp_per_capita_ppp, with the X axis being logarithmic. Compute the correlation coef-
ficient between log(gdp_per_capita_ppp) and life_expectancy_at_birth.

Solution.
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Wecouldapply thelog()-transformationmanually andgenerate fancyXaxis labels ourselves.
However, the plot() function has the log argument (see ?plot.default) which provides us
with all we need, see Figure 2.25.
plot(factbook$gdp_per_capita_ppp,

factbook$life_expectancy_at_birth,

log="x")
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Figure 2.25: Scatter plot of life expectancy vs. GDP/person with log scale on the X
axis

Here is the linear correlation coefficient between the logarithm of the GDP/person and the life
expectancy.
cor(log(factbook$gdp_per_capita_ppp), factbook$life_expectancy_at_birth,

use="complete.obs")

## [1] 0.80665

The correlation is quite high, hence the following task.

■
Exercise 2.14 Fit a model predicting life_expectancy_at_birth by means of
log(gdp_per_capita_ppp).

Solution.

We would like to fit a model of the form 𝑌 = 𝑎 log𝑋 + 𝑏. The formula
life_expectancy_at_birth~log(gdp_per_capita_ppp) should do the trick here.
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f <- lm(life_expectancy_at_birth~log(gdp_per_capita_ppp), data=factbook)

plot(life_expectancy_at_birth~log(gdp_per_capita_ppp), data=factbook)

abline(f, col="red", lty=3)

f$coefficients

## (Intercept) log(gdp_per_capita_ppp)

## 28.3064 4.8178

summary(f)$r.squared

## [1] 0.65069
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Figure 2.26: Linearmodel fitted for life expectancy vs. the logarithm of GDP/person

Comment: That is an okay model (in terms of the coefficient of determination), see
Figure 2.26.

■
Exercise 2.15 Draw the fitted logarithmic model on a scatter plot with a standard, non-
logarithmic X axis.

Solution.

Themodel fitted above is of the form𝑌 ≃ 4.82 log𝑋 + 28.31. To depict it on a plot with linear
(non-logarithmic) axes, we can compute this formula on multiple points by hand, see Figure
2.27.
plot(factbook$gdp_per_capita_ppp, factbook$life_expectancy_at_birth)
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# many points on the X axis:

xxx <- seq(min(factbook$gdp_per_capita_ppp, na.rm=TRUE),

max(factbook$gdp_per_capita_ppp, na.rm=TRUE),

length.out=101)

yyy <- f$coefficients[1] + f$coefficients[2]*log(xxx)

lines(xxx, yyy, col="red", lty=3)
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Figure 2.27: Logarithmic model fitted for life expectancy vs. GDP/person

Comment: Well, people are not immortal… The original (linear) model didn’t really
take that into account. Also, recall that correlation is not causation. Moreover, there
is a lot of variability at an individual level. Being born in a less-wealthy country (e.g.,
not in a tax haven), doesn’t mean you don’t have the whole life ahead of you. Do the
cool stuff, do something for the others. Life’s not about money.

■

2.4.5 Countries of the World – A multiple regression model for the per
capita GDP

Let’s play with World Factbook 2020 (world_factbook_2020.csv) once again. World
is an interesting place, so we’re far from being bored with this dataset.
factbook <- read.csv("datasets/world_factbook_2020.csv",

comment.char="#")

Let’s restrict ourselves to the following columns, mostly related to imports and ex-
ports:
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factbookn <- factbook[c("gdp_purchasing_power_parity",

"imports", "exports", "electricity_exports",

"electricity_imports", "military_expenditures",

"crude_oil_exports", "crude_oil_imports",

"natural_gas_exports", "natural_gas_imports",

"reserves_of_foreign_exchange_and_gold")]

Let’s compute theper capita versionsof the above, bydividingall valuesby each coun-
try’s population:
for (i in 1:ncol(factbookn))

factbookn[[i]] <- factbookn[[i]]/factbook$population

We are going to build a few multiple regression models using the step() function,
which is not too fond of missing values, therefore they should be removed first:
factbookn <- na.omit(factbookn)

c(nrow(factbook), nrow(factbookn)) # how many countries were omitted?

## [1] 261 157

Exercise 2.16 Build a model for gdp_purchasing_power_parity as a function of imports
and exports (all per capita).

Solution.

Let’s first take a look at how the aforementioned variables are related to each other, see Figure
2.28.
pairs(factbookn[c("gdp_purchasing_power_parity", "imports", "exports")])

cor(factbookn[c("gdp_purchasing_power_parity", "imports", "exports")])

## gdp_purchasing_power_parity imports exports

## gdp_purchasing_power_parity 1.00000 0.82891 0.81899

## imports 0.82891 1.00000 0.94241

## exports 0.81899 0.94241 1.00000

They are nicely correlated.Moreover, they are on a similar scale (“tens of thousands of USD per
capita”).

Fitting the requestedmodel yields:
options(scipen=10) # prefer "decimal" over "scientific" notation

f1 <- lm(gdp_purchasing_power_parity~imports+exports, data=factbookn)

f1$coefficients

## (Intercept) imports exports

## 9852.53813 1.44194 0.78067
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Figure 2.28: Scatter plot matrix for GDP, imports and exports

summary(f1)$adj.r.squared

## [1] 0.69598

■
Exercise 2.17 Use forward selection to come up with a model for
gdp_purchasing_power_parity per capita.

Solution.
(model_empty <- gdp_purchasing_power_parity~1)

## gdp_purchasing_power_parity ~ 1
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(model_full <- formula(model.frame(gdp_purchasing_power_parity~., data=factbookn)))

## gdp_purchasing_power_parity ~ imports + exports + electricity_exports +

## electricity_imports + military_expenditures + crude_oil_exports +

## crude_oil_imports + natural_gas_exports + natural_gas_imports +

## reserves_of_foreign_exchange_and_gold

f2 <- step(lm(model_empty, data=factbookn),

scope=model_full,

direction="forward", trace=0)

f2

##

## Call:

## lm(formula = gdp_purchasing_power_parity ~ imports + crude_oil_exports +

## crude_oil_imports + electricity_imports + natural_gas_imports,

## data = factbookn)

##

## Coefficients:

## (Intercept) imports crude_oil_exports

## 7603.24 1.77 128472.22

## crude_oil_imports electricity_imports natural_gas_imports

## 100781.64 1.62 3.13

summary(f2)$adj.r.squared

## [1] 0.7865

Comment: Interestingly, it’s mostly the import-related variables that contribute to
theGDPper capita.However, themodel is notperfect, sowe should refrainourselves
from building a brand new economic theory around this “discovery”. On the other
hand, you knowwhat they say: allmodels arewrong, but somemight be useful.Note
that we used the adjusted𝑅2 coefficient to correct for the number of variables in the
model so as to make it more comparable with the coefficient corresponding to the
f1model.

■
Exercise 2.18 Use backward elimination to construct a model for
gdp_purchasing_power_parity per capita.

Solution.
f3 <- step(lm(model_full, data=factbookn),

scope=model_empty,

direction="backward", trace=0)

f3
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##

## Call:

## lm(formula = gdp_purchasing_power_parity ~ imports + electricity_imports +

## crude_oil_exports + crude_oil_imports + natural_gas_imports,

## data = factbookn)

##

## Coefficients:

## (Intercept) imports electricity_imports

## 7603.24 1.77 1.62

## crude_oil_exports crude_oil_imports natural_gas_imports

## 128472.22 100781.64 3.13

summary(f3)$adj.r.squared

## [1] 0.7865

Comment:This is the samemodel as the one found by forward selection, i.e., f2.

■

2.5 Outro
2.5.1 Remarks
Multiple regression is simple, fast to apply and interpretable.

Linear models go beyond fitting of straight lines and other hyperplanes!

A complex model may overfit and hence generalise poorly to unobserved inputs.

Note that the SSR criterion makes the models sensitive to outliers.

Remember:

goodmodels
=

better understanding of the modelled reality+ better predictions

=

more revenue, your boss’ happiness, your startup’s growth etc.

2.5.2 OtherMethods for Regression
Other example approaches to regression:

• ridge regression,
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• lasso regression,
• least absolute deviations (LAD) regression,
• multiadaptive regression splines (MARS),
• K-nearest neighbour (K-NN) regression, see FNN::knn.reg() in R,
• regression trees,
• support-vector regression (SVR),
• neural networks (also deep) for regression.

2.5.3 Derivation of the Solution (**)
Wewould like to find an analytical solution to the problem ofminimising of the sum
of squared residuals:

min
𝛽0,𝛽1,…,𝛽𝑝∈ℝ

𝐸(𝛽0, 𝛽1, … , 𝛽𝑝) =
𝑛

∑
𝑖=1

(𝛽0 + 𝛽1𝑥𝑖,1 + ⋯ + 𝛽𝑝𝑥𝑖,𝑝 − 𝑦𝑖)
2

This requires computing the 𝑝 + 1 partial derivatives 𝜕𝐸/𝜕𝛽𝑗 for 𝑗 = 0, … , 𝑝.

The partial derivatives are very similar to each other; 𝜕𝐸
𝜕𝛽0

is given by:

𝜕𝐸
𝜕𝛽0

(𝛽0, 𝛽1, … , 𝛽𝑝) = 2
𝑛

∑
𝑖=1

(𝛽0 + 𝛽1𝑥𝑖,1 + ⋯ + 𝛽𝑝𝑥𝑖,𝑝 − 𝑦𝑖)

and 𝜕𝐸
𝜕𝛽𝑗

for 𝑗 > 0 is equal to:

𝜕𝐸
𝜕𝛽𝑗

(𝛽0, 𝛽1, … , 𝛽𝑝) = 2
𝑛

∑
𝑖=1

𝑥𝑖,𝑗 (𝛽0 + 𝛽1𝑥𝑖,1 + ⋯ + 𝛽𝑝𝑥𝑖,𝑝 − 𝑦𝑖)

Then all we need to do is to solve the system of linear equations:

⎧{{{
⎨{{{⎩

𝜕𝐸
𝜕𝛽0

(𝛽0, 𝛽1, … , 𝛽𝑝) = 0
𝜕𝐸
𝜕𝛽1

(𝛽0, 𝛽1, … , 𝛽𝑝) = 0
⋮

𝜕𝐸
𝜕𝛽𝑝

(𝛽0, 𝛽1, … , 𝛽𝑝) = 0

The above system of 𝑝 + 1 linear equations, which we are supposed to solve for
𝛽0, 𝛽1, … , 𝛽𝑝:

⎧{{{
⎨{{{⎩

2 ∑𝑛
𝑖=1 (𝛽0 + 𝛽1𝑥𝑖,1 + ⋯ + 𝛽𝑝𝑥𝑖,𝑝 − 𝑦𝑖) = 0

2 ∑𝑛
𝑖=1 𝑥𝑖,1 (𝛽0 + 𝛽1𝑥𝑖,1 + ⋯ + 𝛽𝑝𝑥𝑖,𝑝 − 𝑦𝑖) = 0

⋮
2 ∑𝑛

𝑖=1 𝑥𝑖,𝑝 (𝛽0 + 𝛽1𝑥𝑖,1 + ⋯ + 𝛽𝑝𝑥𝑖,𝑝 − 𝑦𝑖) = 0
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can be rewritten as:

⎧{{{
⎨{{{⎩

∑𝑛
𝑖=1 (𝛽0 + 𝛽1𝑥𝑖,1 + ⋯ + 𝛽𝑝𝑥𝑖,𝑝) = ∑𝑛

𝑖=1 𝑦𝑖
∑𝑛

𝑖=1 𝑥𝑖,1 (𝛽0 + 𝛽1𝑥𝑖,1 + ⋯ + 𝛽𝑝𝑥𝑖,𝑝) = ∑𝑛
𝑖=1 𝑥𝑖,1𝑦𝑖

⋮
∑𝑛

𝑖=1 𝑥𝑖,𝑝 (𝛽0 + 𝛽1𝑥𝑖,1 + ⋯ + 𝛽𝑝𝑥𝑖,𝑝) = ∑𝑛
𝑖=1 𝑥𝑖,𝑝𝑦𝑖

and further as:

⎧{{{
⎨{{{⎩

𝛽0 𝑛 + 𝛽1 ∑𝑛
𝑖=1 𝑥𝑖,1 + ⋯ + 𝛽𝑝 ∑𝑛

𝑖=1 𝑥𝑖,𝑝 = ∑𝑛
𝑖=1 𝑦𝑖

𝛽0 ∑𝑛
𝑖=1 𝑥𝑖,1 + 𝛽1 ∑𝑛

𝑖=1 𝑥𝑖,1𝑥𝑖,1 + ⋯ + 𝛽𝑝 ∑𝑛
𝑖=1 𝑥𝑖,1𝑥𝑖,𝑝 = ∑𝑛

𝑖=1 𝑥𝑖,1𝑦𝑖
⋮

𝛽0 ∑𝑛
𝑖=1 𝑥𝑖,𝑝 + 𝛽1 ∑𝑛

𝑖=1 𝑥𝑖,𝑝𝑥𝑖,1 + ⋯ + 𝛽𝑝 ∑𝑛
𝑖=1 𝑥𝑖,𝑝𝑥𝑖,𝑝 = ∑𝑛

𝑖=1 𝑥𝑖,𝑝𝑦𝑖

Note that the terms involving 𝑥𝑖,𝑗 and 𝑦𝑖 (the sums) are all constant – these are some
fixed real numbers. We have learned how to solve such problems in high school.

Exercise 2.19 Tryderiving theanalytical solutionand implementing it for𝑝 = 2.Recall that
in the previous chapter we solved the special case of 𝑝 = 1.

2.5.4 Solution inMatrix Form (***)
Assume that 𝐗 ∈ ℝ𝑛×𝑝 (a matrix with inputs), 𝐲 ∈ ℝ𝑛×1 (a column vector of refer-
ence outputs) and𝜷 ∈ ℝ(𝑝+1)×1 (a column vector of parameters).

Firstly, note that a linear model of the form:

𝑓𝜷(𝐱) = 𝛽0 + 𝛽1𝑥1 + ⋯ + 𝛽𝑝𝑥𝑝

can be rewritten as:

𝑓𝜷(𝐱) = 𝛽01 + 𝛽1𝑥1 + ⋯ + 𝛽𝑝𝑥𝑝 = ̇𝐱𝜷,

where ̇𝐱 = [1 𝑥1 𝑥2 ⋯ 𝑥𝑝].

Similarly, if we assume that �̇� = [1 𝐗] ∈ ℝ𝑛×(𝑝+1) is the input matrix with a pre-
pended column of 1s, i.e., 1 = [1 1 ⋯ 1]𝑇 and ̇𝑥𝑖,0 = 1 (for brevity of notation the
columns added will have index 0), ̇𝑥𝑖,𝑗 = 𝑥𝑖,𝑗 for all 𝑗 ≥ 1 and all 𝑖, then:

̂𝐲 = �̇�𝜷

gives the vector of predicted outputs for every input point.

This way, the sum of squared residuals

𝐸(𝛽0, 𝛽1, … , 𝛽𝑝) =
𝑛

∑
𝑖=1

(𝛽0 + 𝛽1𝑥𝑖,1 + ⋯ + 𝛽𝑝𝑥𝑖,𝑝 − 𝑦𝑖)
2
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can be rewritten as:
𝐸(𝜷) = ‖�̇�𝜷 − 𝐲‖2,

where as usual ‖ ⋅ ‖2 denotes the squared Euclidean norm.

Recall that this can be re-expressed as:

𝐸(𝜷) = (�̇�𝜷 − 𝐲)𝑇(�̇�𝜷 − 𝐲).

Inorder tofind theminimumof𝐸w.r.t.𝜷,weneed tofind theparameters thatmake
the partial derivatives vanish, i.e.:

⎧{{{
⎨{{{⎩

𝜕𝐸
𝜕𝛽0

(𝜷) = 0
𝜕𝐸
𝜕𝛽1

(𝜷) = 0
⋮

𝜕𝐸
𝜕𝛽𝑝

(𝜷) = 0

Remark. (***) Interestingly, the above can also be expressed in matrix form, using
the special notation:

∇𝐸(𝜷) = 0
Here,∇𝐸 (nabla symbol = differential operator) denotes the function gradient, i.e.,
the vector of all partial derivatives. This is nothing more than syntactic sugar for
this quite commonly applied operator.

Anyway, the system of linear equations we have derived above:

⎧{{{
⎨{{{⎩

𝛽0 𝑛 + 𝛽1 ∑𝑛
𝑖=1 𝑥𝑖,1 + ⋯ + 𝛽𝑝 ∑𝑛

𝑖=1 𝑥𝑖,𝑝 = ∑𝑛
𝑖=1 𝑦𝑖

𝛽0 ∑𝑛
𝑖=1 𝑥𝑖,1 + 𝛽1 ∑𝑛

𝑖=1 𝑥𝑖,1𝑥𝑖,1 + ⋯ + 𝛽𝑝 ∑𝑛
𝑖=1 𝑥𝑖,1𝑥𝑖,𝑝 = ∑𝑛

𝑖=1 𝑥𝑖,1𝑦𝑖
⋮

𝛽0 ∑𝑛
𝑖=1 𝑥𝑖,𝑝 + 𝛽1 ∑𝑛

𝑖=1 𝑥𝑖,𝑝𝑥𝑖,1 + ⋯ + 𝛽𝑝 ∑𝑛
𝑖=1 𝑥𝑖,𝑝𝑥𝑖,𝑝 = ∑𝑛

𝑖=1 𝑥𝑖,𝑝𝑦𝑖

can be rewritten in matrix terms as:

⎧{{{
⎨{{{⎩

𝛽0 ̇𝐱𝑇
⋅,0 ̇𝐱⋅,0 + 𝛽1 ̇𝐱𝑇

⋅,0 ̇𝐱⋅,1 + ⋯ + 𝛽𝑝 ̇𝐱𝑇
⋅,0 ̇𝐱⋅,𝑝 = ̇𝐱𝑇

⋅,0𝐲
𝛽0 ̇𝐱𝑇

⋅,1 ̇𝐱⋅,0 + 𝛽1 ̇𝐱𝑇
⋅,1 ̇𝐱⋅,1 + ⋯ + 𝛽𝑝 ̇𝐱𝑇

⋅,1 ̇𝐱⋅,𝑝 = ̇𝐱𝑇
⋅,1𝐲

⋮
𝛽0 ̇𝐱𝑇

⋅,𝑝 ̇𝐱⋅,0 + 𝛽1 ̇𝐱𝑇
⋅,𝑝 ̇𝐱⋅,1 + ⋯ + 𝛽𝑝 ̇𝐱𝑇

⋅,𝑝 ̇𝐱⋅,𝑝 = ̇𝐱𝑇
⋅,𝑝𝐲

This can be restated as:
⎧{{{
⎨{{{⎩

( ̇𝐱𝑇
⋅,0�̇�) 𝜷 = ̇𝐱𝑇

⋅,0𝐲
( ̇𝐱𝑇

⋅,1�̇�) 𝜷 = ̇𝐱𝑇
⋅,1𝐲

⋮
( ̇𝐱𝑇

⋅,𝑝�̇�) 𝜷 = ̇𝐱𝑇
⋅,𝑝𝐲

which in turn is equivalent to:

(�̇�𝑇𝐗) 𝜷 = �̇�𝑇𝐲.
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Such a system of linear equations in matrix form can be solved numerically using,
amongst others, the solve() function.

Remark. (***) In practice, we’d rather rely on QR or SVD decompositions of
matrices for efficiency and numerical accuracy reasons.

Numeric example – solution via lm():
X1 <- as.numeric(Credit$Balance[Credit$Balance>0])

X2 <- as.numeric(Credit$Income[Credit$Balance>0])

Y <- as.numeric(Credit$Rating[Credit$Balance>0])

lm(Y~X1+X2)$coefficients

## (Intercept) X1 X2

## 172.5587 0.1828 2.1976

Recalling that𝐀𝑇𝐁 canbe computedby calling t(A) %*% Bor–even faster–by calling
crossprod(A, B), we can also use solve() to obtain the same result:
X_dot <- cbind(1, X1, X2)

solve( crossprod(X_dot, X_dot), crossprod(X_dot, Y) )

## [,1]

## 172.5587

## X1 0.1828

## X2 2.1976

2.5.5 Pearson’s r inMatrix Form (**)
Recall the Pearson linear correlation coefficient:

𝑟(𝒙, 𝒚) =
∑𝑛

𝑖=1(𝑥𝑖 − ̄𝑥)(𝑦𝑖 − ̄𝑦)
√∑𝑛

𝑖=1(𝑥𝑖 − ̄𝑥)2 √∑𝑛
𝑖=1(𝑦𝑖 − ̄𝑦)2

Denote with 𝒙∘ and 𝒚∘ the centred versions of 𝒙 and 𝒚, respectively, i.e., 𝑥∘
𝑖 = 𝑥𝑖 − ̄𝑥

and 𝑦∘
𝑖 = 𝑦𝑖 − ̄𝑦.

Rewriting the above yields:

𝑟(𝒙, 𝒚) =
∑𝑛

𝑖=1 𝑥∘
𝑖 𝑦∘

𝑖

√∑𝑛
𝑖=1(𝑥∘

𝑖 )2 √∑𝑛
𝑖=1(𝑦∘

𝑖 )2

which is exactly:

𝑟(𝒙, 𝒚) = 𝒙∘ ⋅ 𝒚∘

‖𝒙∘‖ ‖𝒚∘‖
i.e., the normalised dot product of the centred versions of the two vectors.

This is the cosine of the angle between the two vectors (in 𝑛-dimensional spaces)!
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(**) Recalling from the previous chapter that 𝐀𝑇𝐀 gives the dot product between
all the pairs of columns in a matrix 𝐀, we can implement an equivalent version of
cor(C) as follows:
C <- Credit[Credit$Balance>0,

c("Rating", "Limit", "Income", "Age",

"Education", "Balance")]

C_centred <- apply(C, 2, function(c) c-mean(c))

C_normalised <- apply(C_centred, 2, function(c)

c/sqrt(sum(c^2)))

round(t(C_normalised) %*% C_normalised, 3)

## Rating Limit Income Age Education Balance

## Rating 1.000 0.996 0.831 0.167 -0.040 0.798

## Limit 0.996 1.000 0.834 0.164 -0.032 0.796

## Income 0.831 0.834 1.000 0.227 -0.033 0.414

## Age 0.167 0.164 0.227 1.000 0.024 0.008

## Education -0.040 -0.032 -0.033 0.024 1.000 0.001

## Balance 0.798 0.796 0.414 0.008 0.001 1.000

2.5.6 Further Reading
Recommended further reading: (James et al. 2017: Chapters 1, 2 and 3)

Other: (Hastie et al. 2017: Chapter 1, Sections 3.2 and 3.3)





3
Classification with K-Nearest Neighbours

These lecture notes are distributed in the hope that theywill be useful.
Any bug reports are appreciated.

3.1 Introduction
3.1.1 Classification Task
Let𝐗 ∈ ℝ𝑛×𝑝 be an input matrix that consists of 𝑛 points in a 𝑝-dimensional space
(each of the 𝑛 objects is described by means of 𝑝 numerical features).

Recall that in supervised learning, with each 𝐱𝑖,⋅ we associate the desired output 𝑦𝑖.

𝐗 =
⎡
⎢
⎢
⎢
⎣

𝑥1,1 𝑥1,2 ⋯ 𝑥1,𝑝
𝑥2,1 𝑥2,2 ⋯ 𝑥2,𝑝

⋮ ⋮ ⋱ ⋮
𝑥𝑛,1 𝑥𝑛,2 ⋯ 𝑥𝑛,𝑝

⎤
⎥
⎥
⎥
⎦

𝐲 =
⎡
⎢⎢⎢
⎣

𝑦1
𝑦2
⋮

𝑦𝑛

⎤
⎥⎥⎥
⎦

.

In this chapter we are interested in classification tasks; we assume that each 𝑦𝑖 is a
label (e.g., a character string) – it is of quantitative/categorical type.

Most commonly, we are faced with binary classification tasks where there are only
two possible distinct labels.

We traditionally denote themwith 0s and 1s.

For example:

81
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0 1

no yes
false true
failure success
healthy ill

On the other hand, inmulticlass classification, we assume that each 𝑦𝑖 takes more
than two possible values.

Example plot of a synthetic datasetwith the reference binary 𝑦s is given in Figure 3.1.
The “true” decision boundary is at𝑋1 = 0 but the classes slightly overlap (the dataset
is a bit noisy).
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3

X1

X2
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Class 1

Figure 3.1: A synthetic 2D dataset with the true decision boundary at𝑋1 = 0

3.1.2 Data
For illustration, let’s consider the Wine Quality dataset (Cortez et al. 2009) that can
be downloaded from the UCI Machine Learning Repository (https://archive.ics.uci.
edu/ml/datasets/Wine+Quality) – white wines only.
wines <- read.csv("datasets/winequality-all.csv",

comment.char="#")

wines <- wines[wines$color == "white",]

(n <- nrow(wines)) # number of samples

## [1] 4898

https://archive.ics.uci.edu/ml/datasets/Wine+Quality
https://archive.ics.uci.edu/ml/datasets/Wine+Quality
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These are Vinho Verde wine samples from the north of Portugal, see https://www.vi
nhoverde.pt/en/homepage.

There are 11 physicochemical features reported. Moreover, there is a wine rating
(which we won’t consider here) on the scale 0 (bad) to 10 (excellent) given by wine
experts.

The input matrix𝐗 ∈ ℝ𝑛×𝑝 consists of the first 10 numeric variables:
X <- as.matrix(wines[,1:10])

dim(X)

## [1] 4898 10

head(X, 2) # first two rows

## fixed.acidity volatile.acidity citric.acid residual.sugar

## 1600 7.0 0.27 0.36 20.7

## 1601 6.3 0.30 0.34 1.6

## chlorides free.sulfur.dioxide total.sulfur.dioxide density pH

## 1600 0.045 45 170 1.001 3.0

## 1601 0.049 14 132 0.994 3.3

## sulphates

## 1600 0.45

## 1601 0.49

The 11th variable measures the amount of alcohol (in %).

We will convert this dependent variable to a binary one:

• 0 == (alcohol < 12) == lower-alcohol wines1
• 1 == (alcohol >= 12) == higher-alcohol wines
# recall that TRUE == 1

Y <- factor(as.character(as.numeric(wines$alcohol >= 12)))

table(Y)

## Y

## 0 1

## 4085 813

Now (𝐗, 𝐲) is a basis for an interesting (yet challenging) binary classification task.

3.1.3 Training and Test Sets
Recall that we are genuinely interested in the construction of supervised learning
models for the two following purposes:

• description – to explain a given dataset in simpler terms,
• prediction– to forecast the values of the dependent variable for inputs that are yet
to be observed.

https://www.vinhoverde.pt/en/homepage
https://www.vinhoverde.pt/en/homepage
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In the latter case:

• we don’t want our models to overfit to current data,
• we want our models to generalisewell to new data.

One way to assess if a model has sufficient predictive power is based on a random
train-test split of the original dataset:

• training sample (usually 60-80% of the observations) – used to construct a model,
• test sample (remaining 40-20%) – used to assess the goodness of fit.

Remark. Test samplemust not be used in the training phase! (No cheating!)

60/40% train-test split in R:
set.seed(123) # reproducibility matters

random_indices <- sample(n)

head(random_indices) # preview

## [1] 2463 2511 2227 526 4291 2986

# first 60% of the indices (they are arranged randomly)

# will constitute the train sample:

train_indices <- random_indices[1:floor(n*0.6)]

X_train <- X[train_indices,]

Y_train <- Y[train_indices]

# the remaining indices (40%) go to the test sample:

X_test <- X[-train_indices,]

Y_test <- Y[-train_indices]

3.1.4 DiscussedMethods
Our aim is to build a classifier that takes 10 wine physicochemical features and de-
termines whether it’s a “strong” wine.

We will discuss 3 simple and educational (yet practically useful) classification al-
gorithms:

• K-nearest neighbour scheme – this chapter,
• Decision trees – the next chapter,
• Logistic regression – the next chapter.
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3.2 K-nearest Neighbour Classifier
3.2.1 Introduction
Rule. “If you don’t know what to do in a situation, just act like the people around
you”

For some integer 𝐾 ≥ 1, the K-Nearest Neighbour (K-NN) Classifier proceeds as
follows.

To classify a new point 𝐱′:

1. find the 𝐾 nearest neighbours of a given point 𝐱′ amongst the points in
the train set, denoted 𝐱𝑖1,⋅, … , 𝐱𝑖𝐾 ,⋅:
a. compute the Euclidean distances between 𝐱′ and each 𝐱𝑖,⋅ from the

train set,
𝑑𝑖 = ‖𝐱′ − 𝐱𝑖,⋅‖

b. order 𝑑𝑖s in increasing order, 𝑑𝑖1 ≤ 𝑑𝑖2 ≤ … ≤ 𝑑𝑖𝐾
c. pick first 𝐾 indices (these are the nearest neighbours)

2. fetch the corresponding reference labels 𝑦𝑖1 , … , 𝑦𝑖𝐾
3. return their mode as a result, i.e., the most frequently occurring label

(a.k.a.majority vote)

Here is how 𝐾-NN classifier works on a synthetic 2D dataset. Firstly let’s consider
𝐾 = 1, see Figure 3.2. Gray and pink regions depict how new points would be classi-
fied. In particular 1-NN is “greedy” in the sense that we just locate the nearest point.

Remark. (*) 1-NN classification is essentially based on a dataset’s so-called Voronoi
diagram.

Increasing 𝐾 somehow smoothens the decision boundary (this makes it less “local”
andmore “global”). Figure 3.3 depicts the 𝐾 = 3 case.

Recall that the “true” decision boundary for this synthetic dataset is at 𝑋1 = 0. The
25-NN classifier did quite a good job, see Figure 3.4.

3.2.2 Example in R
We shall be calling the knn() function from package FNN to classify the points from
the test sample extracted from the wines dataset:
library("FNN")

Let’s make prediction using the 5-nn classifier:
Y_knn5 <- knn(X_train, X_test, Y_train, k=5)

head(Y_test, 28) # True Ys
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Figure 3.2: 1-NN class bounds for our 2D synthetic dataset
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Figure 3.3: 3-NN class bounds for our 2D synthetic dataset
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Figure 3.4: 25-NN class bounds for our 2D synthetic dataset

## [1] 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

## Levels: 0 1

head(Y_knn5, 28) # Predicted Ys

## [1] 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

## Levels: 0 1

mean(Y_test == Y_knn5) # accuracy

## [1] 0.81735

9-nn classifier:
Y_knn9 <- knn(X_train, X_test, Y_train, k=9)

head(Y_test, 28) # True Ys

## [1] 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

## Levels: 0 1

head(Y_knn9, 28) # Predicted Ys

## [1] 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

## Levels: 0 1

mean(Y_test == Y_knn9) # accuracy

## [1] 0.81939
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3.2.3 Feature Engineering
Note that the Euclidean distance that we used above implicitly assumes that every
feature (independent variable) is on the same scale.

However,whendealingwith, e.g., physical quantities,weoftenperformconversions
of units of measurement (kg → g, feet → m etc.).

Transforming a single feature may drastically change the metric structure of the
dataset and therefore highly affect the obtained predictions.

To “bring data to the same scale”, we often apply a trick called standardisation.

Computing the so-calledZ-scoresof the 𝑗-th feature,𝐱⋅,𝑗, is doneby subtracting from
each observation the sample mean and dividing the result by the sample standard
deviation:

𝑧𝑖,𝑗 =
𝑥𝑖,𝑗 − ̄𝑥⋅,𝑗

𝑠𝑥⋅,𝑗

This a new feature 𝐳⋅,𝑗 that always has mean 0 and standard deviation of 1.

Moreover, it is unit-less (e.g., we divide a value in kgs by a value in kgs, the units are
cancelled out). This, amongst others, prevents one of the features from dominating
the other ones.

Z-scores are easy to interpret, e.g., 0.5 denotes an observation that is 0.5 standard
deviations above the mean and -3 informs us that a value is 3 standard deviations
below the mean.

Remark. (*) If data are normally distributed (bell-shaped histogram), with very
high probability, most (expected value is 99.74%) observations should have Z-
scores between -3 and 3.Those that don’t, are “suspicious”,maybe they are outliers?
We should inspect themmanually.

Let’s compute Z_train and Z_test, being the standardised versions of X_train and
X_test, respectively.
means <- apply(X_train, 2, mean) # column means

sds <- apply(X_train, 2, sd) # column standard deviations

Z_train <- X_train # copy

Z_test <- X_test # copy

for (j in 1:ncol(X)) {

Z_train[,j] <- (Z_train[,j]-means[j])/sds[j]

Z_test[,j] <- (Z_test[,j] -means[j])/sds[j]

}

Note that we have transformed the training and test sample in the very same way.
Computing means and standard deviations separately for these two datasets is a
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commonerror– it is the training set thatweuse in the course of the learningprocess.
The above can be re-written as:
Z_train <- t(apply(X_train, 1, function(r) (r-means)/sds))

Z_test <- t(apply(X_test, 1, function(r) (r-means)/sds))

See Figure 3.5 for an illustration. Note that the righthand figures (histograms of
standardised variables) are on the same scale now.
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Figure 3.5: Empirical distribution of two variables (pH on the top, fixed.acidity on
the bottom) before (left) and after (right) standardising

Remark. Of course, standardisation is only about shifting and scaling, it preserves
the shape of the distribution. If the original variable is right skewed or bimodal, its
standardised version will remain as such.

Let’s compute the accuracy of K-NN classifiers acting on standardised data.
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Y_knn5s <- knn(Z_train, Z_test, Y_train, k=5)

mean(Y_test == Y_knn5s) # accuracy

## [1] 0.91429

Y_knn9s <- knn(Z_train, Z_test, Y_train, k=9)

mean(Y_test == Y_knn9s) # accuracy

## [1] 0.91378

The accuracy is much better.

Standardisation is an example of feature engineering.

Good models rarely work well “straight out of the box” – if that was the case, we
wouldn’t need data scientists andmachine learning engineers!

To increase models’ accuracy, we often spend a lot of time:

• cleansing data (e.g., removing outliers)
• extracting new features
• transforming existing features
• trying to find a set of features that are relevant

This is the “more art than science” part of data science (sic!), and hence most text-
books are not really eager for discussing such topics (including this one).

Sorry, this is sad but true. The solutions that work well in the case of dataset A may
fail in the B case and vice versa. However, the more exercises you solve, the greater
the arsenal of ideas/possible approaches you will have at hand when dealing with
real-world problems.

Feature selection – example (manually selected columns):
features <- c("density", "residual.sugar")

Y_knn5s <- knn(Z_train[,features], Z_test[,features],

Y_train, k=5)

mean(Y_test == Y_knn5s) # accuracy

## [1] 0.91633

Y_knn9s <- knn(Z_train[,features], Z_test[,features],

Y_train, k=9)

mean(Y_test == Y_knn9s) # accuracy

## [1] 0.925

Exercise 3.1 Try to find a combination of 2-4 features (by guessing or applyingmagic tricks)
that increases the accuracy of a𝐾-NN classifier on this dataset.
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3.3 Model Assessment and Selection
3.3.1 PerformanceMetrics
Recall that 𝑦𝑖 denotes the true label associated with the 𝑖-th observation.

Let ̂𝑦𝑖 denote the classifier’s output for a given 𝐱𝑖,⋅.

Ideally, we’d wish that ̂𝑦𝑖 = 𝑦𝑖.

Sadly, in practice we will make errors.

Here are the 4 possible situations (true vs. predicted label):

. 𝑦𝑖 = 0 𝑦𝑖 = 1
̂𝑦𝑖 = 0 TrueNegative False Negative

(Type II error)
̂𝑦𝑖 = 1 False Positive (Type I error) True Positive

Note that the terms positive and negative refer to the classifier’s output, i.e., occur
when ̂𝑦𝑖 is equal to 1 and 0, respectively.

A confusion matrix is used to summarise the correctness of predictions for the
whole sample:
Y_pred <- knn(Z_train, Z_test, Y_train, k=9)

(C <- table(Y_pred, Y_test))

## Y_test

## Y_pred 0 1

## 0 1607 133

## 1 36 184

For example,
C[1,1] # number of TNs

## [1] 1607

C[2,1] # number of FPs

## [1] 36

Accuracy is the ratio of the correctly classified instances to all the instances.

In other words, it is the probability of making a correct prediction.
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Accuracy = TP+ TN
TP+ TN+ FP+ FN

= 1
𝑛

𝑛
∑
𝑖=1

𝕀 (𝑦𝑖 = ̂𝑦𝑖)

where 𝕀 is the indicator function, 𝕀(𝑙) = 1 if logical condition 𝑙 is true and 0 other-
wise.
mean(Y_test == Y_pred) # accuracy

## [1] 0.91378

(C[1,1]+C[2,2])/sum(C) # equivalently

## [1] 0.91378

Inmany applicationswe are dealingwithunbalancedproblems, where the case 𝑦𝑖 =
1 is relatively rare, yet predicting it correctly is much more important than being
accurate with respect to class 0.

Remark. Think of medical applications, e.g., HIV testing or tumour diagnosis.

In such a case, accuracy as a metric fails to quantify what we are aiming for.

Remark. If only 1%of the caseshave true𝑦𝑖 = 1, thenadummyclassifier that always
outputs ̂𝑦𝑖 = 0 has 99% accuracy.

Metrics such as precision and recall (and their aggregated version, F-measure) aim
to address this problem.

Precision

Precision = TP
TP+ FP

If the classifier outputs 1, what is the probability that this is indeed true?
C[2,2]/(C[2,2]+C[2,1]) # Precision

## [1] 0.83636

Recall (a.k.a. sensitivity, hit rate or true positive rate)

Recall = TP
TP+ FN

If the true class is 1, what is the probability that the classifier will detect it?
C[2,2]/(C[2,2]+C[1,2]) # Recall

## [1] 0.58044
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Remark. Precision or recall? It depends on an application. Think of medical dia-
gnosis, medical screening, plagiarism detection, etc. — which measure is more
important in each of the settings listed?

As a compromise, we can use the F-measure (a.k.a. 𝐹1-measure), which is the har-
monic mean of precision and recall:

F = 1
1

Precision+ 1
Recall

2

= (1
2 (Precision−1 + Recall−1))

−1
= TP
TP+ FP+FN

2

Exercise 3.2 Show that the above equality holds.
C[2,2]/(C[2,2]+0.5*C[1,2]+0.5*C[2,1]) # F

## [1] 0.68529

The following function can come in handy in the future:
get_metrics <- function(Y_pred, Y_test)

{

C <- table(Y_pred, Y_test) # confusion matrix

stopifnot(dim(C) == c(2, 2))

c(Acc=(C[1,1]+C[2,2])/sum(C), # accuracy

Prec=C[2,2]/(C[2,2]+C[2,1]), # precision

Rec=C[2,2]/(C[2,2]+C[1,2]), # recall

F=C[2,2]/(C[2,2]+0.5*C[1,2]+0.5*C[2,1]), # F-measure

# Confusion matrix items:

TN=C[1,1], FN=C[1,2],

FP=C[2,1], TP=C[2,2]

) # return a named vector

}

get_metrics(Y_pred, Y_test)

## Acc Prec Rec F TN FN

## 0.91378 0.83636 0.58044 0.68529 1607.00000 133.00000

## FP TP

## 36.00000 184.00000

3.3.2 How to Choose K for K-NNClassification?
We haven’t yet considered the question which 𝐾 yields the best classifier.

Best == one that has the highest predictive power.

Best == with respect to some chosen metric (accuracy, recall, precision, F-measure,
…)
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Let’s study how the metrics on the test set change as functions of the number of
nearest neighbours considered, 𝐾.

Auxiliary function:
knn_metrics <- function(k, X_train, X_test, Y_train, Y_test)

{

Y_pred <- knn(X_train, X_test, Y_train, k=k) # classify

get_metrics(Y_pred, Y_test)

}

For example:
knn_metrics(5, Z_train, Z_test, Y_train, Y_test)

## Acc Prec Rec F TN FN

## 0.91429 0.82251 0.59937 0.69343 1602.00000 127.00000

## FP TP

## 41.00000 190.00000

Example call to evaluate metrics as a function of different 𝐾s:
Ks <- seq(1, 19, by=2)

Ps <- as.data.frame(t(

sapply(Ks, # on each element in this vector

knn_metrics, # apply this function

Z_train, Z_test, Y_train, Y_test # aux args

)))

Remark. Note that sapply(X, f, arg1, arg2, ...) outputs a list Y such that Y[[i]]
= f(X[i], arg1, arg2, ...)which is then simplified to a matrix.

Remark. We transpose this result, t(), in order to get each metric corresponding
to different columns in the result. As usual, if you keep wondering, e.g., why t(),
play with the code yourself – it’s fun fun fun.

Example results:
round(cbind(K=Ks, Ps), 2)

## K Acc Prec Rec F TN FN FP TP

## 1 1 0.92 0.77 0.72 0.74 1574 90 69 227

## 2 3 0.92 0.79 0.66 0.72 1587 108 56 209

## 3 5 0.91 0.82 0.60 0.69 1602 127 41 190

## 4 7 0.91 0.82 0.56 0.67 1604 138 39 179

## 5 9 0.91 0.84 0.58 0.69 1607 133 36 184

## 6 11 0.91 0.85 0.56 0.68 1611 138 32 179

## 7 13 0.91 0.83 0.57 0.68 1606 136 37 181

## 8 15 0.91 0.83 0.55 0.66 1607 144 36 173

## 9 17 0.91 0.82 0.53 0.64 1607 149 36 168
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## 10 19 0.90 0.81 0.52 0.63 1603 151 40 166

Figure 3.6 is worth a thousand tables though (see ?matplot in R).The reader is kindly
asked to draw conclusions themself.
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Figure 3.6: Performance of 𝐾-nn classifiers as a function of 𝐾 for standardised and
raw data

3.3.3 Training, Validation and Test sets
In the 𝐾-NN classification task, there are many hyperparameters to tune up:

• Which 𝐾 should we choose?

• Should we standardise the dataset?

• Which variables should be taken into account when computing the Euclidean dis-
tance?

Remark. If we select the best hyperparameter set based on test sample error, we
will run into the trap of overfitting again. This time we’ll be overfitting to the test
set — the model that is optimal for a given test sample doesn’t have to generalise
well to other test samples (!).

In order to overcome this problem, we can perform a random train-validation-test
split of the original dataset:

• training sample (e.g., 60%) – used to construct the models
• validation sample (e.g., 20%) – used to tune the hyperparameters of the classifier
• test sample (e.g., 20%) – used to assess the goodness of fit
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An example way to perform a 60/20/20% train-validation-test split:
set.seed(123) # reproducibility matters

random_indices <- sample(n)

n1 <- floor(n*0.6)

n2 <- floor(n*0.8)

X2_train <- X[random_indices[1 :n1], ]

Y2_train <- Y[random_indices[1 :n1] ]

X2_valid <- X[random_indices[(n1+1):n2], ]

Y2_valid <- Y[random_indices[(n1+1):n2] ]

X2_test <- X[random_indices[(n2+1):n ], ]

Y2_test <- Y[random_indices[(n2+1):n ] ]

stopifnot(nrow(X2_train)+nrow(X2_valid)+nrow(X2_test)

== nrow(X))

Exercise 3.3 Find the best 𝐾 on the validation set and compute the error metrics on the test
set.

Remark. (*) If ourdataset is too small,we canuse various cross-validation techniques
instead of a train-validate-test split.

3.4 Implementing a K-NNClassifier (*)
3.4.1 Factor Data Type
Recall that (see Appendix B for more details) factor type in R is a very convenient
means to encode categorical data (such as 𝐲):
x <- c("yes", "no", "no", "yes", "no")

f <- factor(x, levels=c("no", "yes"))

f

## [1] yes no no yes no

## Levels: no yes

table(f) # counts

## f

## no yes

## 3 2

Internally, objects of type factor are represented as integer vectors with elements in
{1, … , 𝑀}, where𝑀 is the number of possible levels.

Labels, used to “decipher” the numeric codes, are stored separately.
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as.numeric(f) # 2nd label, 1st label, 1st label etc.

## [1] 2 1 1 2 1

levels(f)

## [1] "no" "yes"

levels(f) <- c("failure", "success") # re-encode

f

## [1] success failure failure success failure

## Levels: failure success

3.4.2 Main Routine (*)
Let’s implement a K-NN classifier ourselves by using a top-bottom approach.

We will start with a general description of the admissible inputs and the expected
output.

Then we will arrange the processing of data into conveniently manageable chunks.

The function’s declaration will look like:
our_knn <- function(X_train, X_test, Y_train, k=1) {

# k=1 denotes a parameter with a default value

# ...

}

Load an example dataset on which we will test our algorithm:
wines <- read.csv("datasets/winequality-all.csv",

comment.char="#")

wines <- wines[wines$color == "white",]

X <- as.matrix(wines[,1:10])

Y <- factor(as.character(as.numeric(wines$alcohol >= 12)))

Note that Y is now a factor object.

Train-test split:
set.seed(123)

random_indices <- sample(n)

train_indices <- random_indices[1:floor(n*0.6)]

X_train <- X[train_indices,]

Y_train <- Y[train_indices]

X_test <- X[-train_indices,]

Y_test <- Y[-train_indices]

First, we should specify the type and form of the arguments we’re expecting:
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# this is the body of our_knn() - part 1

stopifnot(is.numeric(X_train), is.matrix(X_train))

stopifnot(is.numeric(X_test), is.matrix(X_test))

stopifnot(is.factor(Y_train))

stopifnot(ncol(X_train) == ncol(X_test))

stopifnot(nrow(X_train) == length(Y_train))

stopifnot(k >= 1)

n_train <- nrow(X_train)

n_test <- nrow(X_test)

p <- ncol(X_train)

M <- length(levels(Y_train))

Therefore,

X_train ∈ ℝn_train×p, X_test ∈ ℝn_test×p and Y_train ∈ {1, … , 𝑀}n_train

Remark. Recall that R factor objects are internally encoded as integer vectors.

Next, we will call the (to-be-done) function our_get_knnx(), which seeks nearest
neighbours of all the points:
# our_get_knnx returns a matrix nn_indices of size n_test*k,

# where nn_indices[i,j] denotes the index of

# X_test[i,]'s j-th nearest neighbour in X_train.

# (It is the point X_train[nn_indices[i,j],]).

nn_indices <- our_get_knnx(X_train, X_test, k)

Then, for each point in X_test, we fetch the labels corresponding to its nearest neigh-
bours and compute their mode:
Y_pred <- numeric(n_test) # vector of length n_test

# For now we will operate on the integer labels in {1,...,M}

Y_train_int <- as.numeric(Y_train)

for (i in 1:n_test) {

# Get the labels of the NNs of the i-th point:

nn_labels_i <- Y_train_int[nn_indices[i,]]

# Compute the mode (majority vote):

Y_pred[i] <- our_mode(nn_labels_i) # in {1,...,M}

}

Finally, we should convert the resulting integer vector to an object of type factor:
# Convert Y_pred to factor:

return(factor(Y_pred, labels=levels(Y_train)))

3.4.3 Mode
To implement the mode, we can use the tabulate() function.
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Exercise 3.4 Read the function’s man page, see ?tabulate.

For example:
tabulate(c(1, 2, 1, 1, 1, 5, 2))

## [1] 4 2 0 0 1

Theremight be multiple modes – in such a case, we should pick one at random.

For that, we can use the sample() function.

Exercise 3.5 Read the function’s man page, see ?sample. Note that its behaviour is different
when it’s first argument is a vector of length 1.

An example implementation:
our_mode <- function(Y) {

# tabulate() will take care of

# checking the correctness of Y

t <- tabulate(Y)

mode_candidates <- which(t == max(t))

if (length(mode_candidates) == 1) return(mode_candidates)

else return(sample(mode_candidates, 1))

}

our_mode(c(1, 1, 1, 1))

## [1] 1

our_mode(c(2, 2, 2, 2))

## [1] 2

our_mode(c(3, 1, 3, 3))

## [1] 3

our_mode(c(1, 1, 3, 3, 2))

## [1] 3

our_mode(c(1, 1, 3, 3, 2))

## [1] 1

3.4.4 NNSearch Routines (*)
Last but not least, we should implement the our_get_knnx() function.

It is the function responsible for seeking the indices of nearest neighbours.

It turns out this function will actually constitute the K-NN classifier’s performance
bottleneck in case of big data samples.
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# our_get_knnx returns a matrix nn_indices of size n_test*k,

# where nn_indices[i,j] denotes the index of

# X_test[i,]'s j-th nearest neighbour in X_train.

# (It is the point X_train[nn_indices[i,j],]).

our_get_knnx <- function(X_train, X_test, k) {

# ...

}

A naive approach to our_get_knnx() relies on computing all pairwise distances, and
sorting them.
our_get_knnx <- function(X_train, X_test, k) {

n_test <- nrow(X_test)

nn_indices <- matrix(NA_real_, nrow=n_test, ncol=k)

for (i in 1:n_test) {

d <- apply(X_train, 1, function(x)

sqrt(sum((x-X_test[i,])^2)))

# now d[j] is the distance

# between X_train[j,] and X_test[i,]

nn_indices[i,] <- order(d)[1:k]

}

nn_indices

}

A comparison with FNN:knn():
system.time(Ya <- knn(X_train, X_test, Y_train, k=5))

## user system elapsed

## 0.128 0.000 0.128

system.time(Yb <- our_knn(X_train, X_test, Y_train, k=5))

## user system elapsed

## 15.683 0.000 15.683

mean(Ya == Yb) # 1.0 on perfect match

## [1] 1

Both functions return identical results but our implementation is “slightly” slower.

FNN:knn() is efficiently written in C++, which is a compiled programming language.

R, on the other hand (just like Python andMatlab) is interpreted, therefore as a rule
of thumbwe should consider it an order ofmagnitude slower (see, however, the Julia
language).

Let’s substitute our naive implementation with the equivalent one, but written in
C++ (available in the FNN package).
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Remark. (*) Note that we can write a C++ implementation ourselves, see the Rcpp
package for seamless R and C++ integration.

our_get_knnx <- function(X_train, X_test, k) {

# this is used by our_knn()

FNN::get.knnx(X_train, X_test, k, algorithm="brute")$nn.index

}

system.time(Ya <- knn(X_train, X_test, Y_train, k=5))

## user system elapsed

## 0.124 0.000 0.124

system.time(Yb <- our_knn(X_train, X_test, Y_train, k=5))

## user system elapsed

## 0.044 0.000 0.045

mean(Ya == Yb) # 1.0 on perfect match

## [1] 1

Note that our solution requires 𝑐⋅𝑛test ⋅𝑛train ⋅𝑝 arithmetic operations for some 𝑐 > 1.
The overall cost of sorting is at least 𝑑 ⋅ 𝑛test ⋅ 𝑛train ⋅ log𝑛train for some 𝑑 > 1.

This does not scale well with both 𝑛test and 𝑛train (think – big data).

It turns out that there are special spatial data structures – such asmetric trees – that
aim to speed up searching for nearest neighbours in low-dimensional spaces (for small
𝑝).

Remark. (*) Searching inhigh-dimensional spaces is harddue to the so-called curse
of dimensionality.

For example, FNN::get.knnx() also implements the so-called kd-trees.
library("microbenchmark")

test_speed <- function(n, p, k) {

A <- matrix(runif(n*p), nrow=n, ncol=p)

s <- summary(microbenchmark::microbenchmark(

brute=FNN::get.knnx(A, A, k, algorithm="brute"),

kd_tree=FNN::get.knnx(A, A, k, algorithm="kd_tree"),

times=3

), unit="s")

# minima of 3 time measurements:

structure(s$min, names=as.character(s$expr))

}

test_speed(10000, 2, 5)

## brute kd_tree
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## 0.257222 0.011391

test_speed(10000, 5, 5)

## brute kd_tree

## 0.39690 0.05729

test_speed(10000, 10, 5)

## brute kd_tree

## 0.62622 0.59807

test_speed(10000, 20, 5)

## brute kd_tree

## 1.1224 4.8675

3.4.5 DifferentMetrics (*)
TheEuclidean distance is just one particular example ofmany possiblemetrics (met-
ric == amathematical term, above we have used this term in amore relaxed fashion,
when referring to accuracy etc.).

Mathematically, we say that 𝑑 is a metric on a set𝑋 (e.g.,ℝ𝑝), whenever it is a func-
tion 𝑑 ∶ 𝑋 × 𝑋 → [0, ∞] such that for all 𝑥, 𝑥′, 𝑥″ ∈ 𝑋:

• 𝑑(𝑥, 𝑥′) = 0 if and only if 𝑥 = 𝑥′,
• 𝑑(𝑥, 𝑥′) = 𝑑(𝑥′, 𝑥) (it is symmetric)
• 𝑑(𝑥, 𝑥″) ≤ 𝑑(𝑥, 𝑥′) + 𝑑(𝑥′, 𝑥″) (it fulfils the triangle inequality)

Remark. (*) Not all the properties are required in all the applications; sometimes
wemight need a few additional ones.

We can easily generalise thewaywe introduced the K-NNmethod to have a classifier
that is based on a point’s neighbourhood with respect to any metric.

Example metrics onℝ𝑝:

• Euclidean

𝑑2(𝐱, 𝐱′) = ‖𝐱 − 𝐱′‖ = ‖𝐱 − 𝐱′‖2 =
√
√√
⎷

𝑝
∑
𝑖=1

(𝑥𝑖 − 𝑥′
𝑖)2

• Manhattan (taxicab)

𝑑1(𝐱, 𝐱′) = ‖𝐱 − 𝐱′‖1 =
𝑝

∑
𝑖=1

|𝑥𝑖 − 𝑥′
𝑖 |

• Chebyshev (maximum)

𝑑∞(𝐱, 𝐱′) = ‖𝐱 − 𝐱′‖∞ = max
𝑖=1,…,𝑝

|𝑥𝑖 − 𝑥′
𝑖 |
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We can definemetrics on different spaces too.

For example, the Levenshtein distance is a popular choice for comparing character
strings (also DNA sequences etc.)

It is an edit distance– itmeasures theminimal number of single-character insertions,
deletions or substitutions to change one string into another.

For instance:
adist("happy", "nap")

## [,1]

## [1,] 3

This is because we need 1 substitution and 2 deletions,

happy → nappy → napp → nap.

See also:

• the Hamming distance for categorical vectors (or strings of equal lengths),
• the Jaccard distance for sets,
• the Kendall tau rank distance for rankings.

Moreover, R package stringdist includes implementations of numerous stringmet-
rics.

3.5 Outro
3.5.1 Remarks
Note that K-NN is suitable for any kind of multiclass classification.

However, in practice it’s pretty slow for larger datasets – to classify a single point we
have to query the whole training set (which should be available at all times).

In the next part we will discuss some other well-known classifiers:

• Decision trees
• Logistic regression

3.5.2 SideNote: K-NNRegression
TheK-Nearest Neighbour scheme is intuitively pleasing.

No wonder it has inspired a similar approach for solving a regression task.

In order to make a prediction for a new point 𝐱′:
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1. find the K-nearest neighbours of 𝐱′ amongst the points in the train set,
denoted 𝐱𝑖1,⋅, … , 𝐱𝑖𝐾 ,⋅,

2. fetch the corresponding reference outputs 𝑦𝑖1 , … , 𝑦𝑖𝐾 ,
3. return their arithmetic mean as a result,

̂𝑦 = 1
𝐾

𝐾
∑
𝑗=1

𝑦𝑖𝑗 .

Recall ourmodelling of theCredit Rating (𝑌) as a function of the averageCredit Card
Balance (𝑋) based on the ISLR::Credit dataset.
library("ISLR") # Credit dataset

Xc <- as.matrix(as.numeric(Credit$Balance[Credit$Balance>0]))

Yc <- as.matrix(as.numeric(Credit$Rating[Credit$Balance>0]))

library("FNN") # knn.reg function

x <- as.matrix(seq(min(Xc), max(Xc), length.out=101))

y1 <- knn.reg(Xc, x, Yc, k=1)$pred

y5 <- knn.reg(Xc, x, Yc, k=5)$pred

y25 <- knn.reg(Xc, x, Yc, k=25)$pred

The three models are depicted in Figure 3.7. Again, the higher the 𝐾, the smoother
the curve.On the other hand, for small𝐾we adapt better towhat’s in a point’s neigh-
bourhood.
plot(Xc, Yc, col="#666666c0",

xlab="Balance", ylab="Rating")

lines(x, y1, col=2, lwd=3)

lines(x, y5, col=3, lwd=3)

lines(x, y25, col=4, lwd=3)

legend("topleft", legend=c("K=1", "K=5", "K=25"),

col=c(2, 3, 4), lwd=3, bg="white")

3.5.3 Further Reading
Recommended further reading: (Hastie et al. 2017: Section 13.3)
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Figure 3.7: K-NN regression example





4
Classification with Trees and LinearModels

These lecture notes are distributed in the hope that theywill be useful.
Any bug reports are appreciated.

4.1 Introduction
4.1.1 Classification Task
Let𝐗 ∈ ℝ𝑛×𝑝 be an input matrix that consists of 𝑛 points in a 𝑝-dimensional space
(each of the 𝑛 objects is described by means of 𝑝 numerical features)

Recall that in supervised learning, with each 𝐱𝑖,⋅ we associate the desired output 𝑦𝑖.

Hence, ourdataset is [𝐗𝐲]–where eachobject is representedas a rowvector [𝐱𝑖,⋅ 𝑦𝑖],
𝑖 = 1, … , 𝑛:

[𝐗 𝐲] =
⎡
⎢
⎢
⎢
⎣

𝑥1,1 𝑥1,2 ⋯ 𝑥1,𝑝 𝑦1
𝑥2,1 𝑥2,2 ⋯ 𝑥2,𝑝 𝑦2

⋮ ⋮ ⋱ ⋮ ⋮
𝑥𝑛,1 𝑥𝑛,2 ⋯ 𝑥𝑛,𝑝 𝑦𝑛

⎤
⎥
⎥
⎥
⎦

.

In this chapter we are still interested in classification tasks; we assume that each 𝑦𝑖
is a descriptive label.

Let’s assume that we are faced with binary classification tasks.

Hence, there are only two possible labels that we traditionally denote with 0s and 1s.

For example:

107
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0 1

no yes
false true
failure success
healthy ill

Let’s recall the synthetic 2D dataset from the previous chapter (true decision bound-
ary is at𝑋1 = 0), see Figure 4.1.

-4 -2 0 2 4

-2
-1

0
1

2
3

X1

X2

Class 0
Class 1

Figure 4.1: A synthetic 2D dataset with the true decision boundary at𝑋1 = 0

4.1.2 Data
For illustration, we’ll be considering theWine Quality dataset (white wines only):
wines <- read.csv("datasets/winequality-all.csv",

comment.char="#")

wines <- wines[wines$color == "white",]

(n <- nrow(wines)) # number of samples

## [1] 4898

The input matrix𝐗 ∈ ℝ𝑛×𝑝 consists of the first 10 numeric variables:
X <- as.matrix(wines[,1:10])

dim(X)

## [1] 4898 10
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head(X, 2) # first two rows

## fixed.acidity volatile.acidity citric.acid residual.sugar

## 1600 7.0 0.27 0.36 20.7

## 1601 6.3 0.30 0.34 1.6

## chlorides free.sulfur.dioxide total.sulfur.dioxide density pH

## 1600 0.045 45 170 1.001 3.0

## 1601 0.049 14 132 0.994 3.3

## sulphates

## 1600 0.45

## 1601 0.49

The 11th variable measures the amount of alcohol (in %).

We will convert this dependent variable to a binary one:

• 0 == (alcohol < 12) == lower-alcohol wines
• 1 == (alcohol >= 12) == higher-alcohol wines
# recall that TRUE == 1

Y <- factor(as.character(as.numeric(wines$alcohol >= 12)))

table(Y)

## Y

## 0 1

## 4085 813

60/40% train-test split:
set.seed(123) # reproducibility matters

random_indices <- sample(n)

head(random_indices) # preview

## [1] 2463 2511 2227 526 4291 2986

# first 60% of the indices (they are arranged randomly)

# will constitute the train sample:

train_indices <- random_indices[1:floor(n*0.6)]

X_train <- X[train_indices,]

Y_train <- Y[train_indices]

# the remaining indices (40%) go to the test sample:

X_test <- X[-train_indices,]

Y_test <- Y[-train_indices]

Let’s also compute Z_train and Z_test, being the standardised versions of X_train
and X_test, respectively.
means <- apply(X_train, 2, mean) # column means

sds <- apply(X_train, 2, sd) # column standard deviations
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Z_train <- t(apply(X_train, 1, function(r) (r-means)/sds))

Z_test <- t(apply(X_test, 1, function(r) (r-means)/sds))

get_metrics <- function(Y_pred, Y_test)

{

C <- table(Y_pred, Y_test) # confusion matrix

stopifnot(dim(C) == c(2, 2))

c(Acc=(C[1,1]+C[2,2])/sum(C), # accuracy

Prec=C[2,2]/(C[2,2]+C[2,1]), # precision

Rec=C[2,2]/(C[2,2]+C[1,2]), # recall

F=C[2,2]/(C[2,2]+0.5*C[1,2]+0.5*C[2,1]), # F-measure

# Confusion matrix items:

TN=C[1,1], FN=C[1,2],

FP=C[2,1], TP=C[2,2]

) # return a named vector

}

Let’s go back to the K-NN algorithm.
library("FNN")

Y_knn5 <- knn(X_train, X_test, Y_train, k=5)

Y_knn9 <- knn(X_train, X_test, Y_train, k=9)

Y_knn5s <- knn(Z_train, Z_test, Y_train, k=5)

Y_knn9s <- knn(Z_train, Z_test, Y_train, k=9)

Recall the quality metrics we have obtained previously (as a point of reference):
cbind(

Knn5=get_metrics(Y_knn5, Y_test),

Knn9=get_metrics(Y_knn9, Y_test),

Knn5s=get_metrics(Y_knn5s, Y_test),

Knn9s=get_metrics(Y_knn9s, Y_test)

)

## Knn5 Knn9 Knn5s Knn9s

## Acc 0.81735 0.81939 0.91429 0.91378

## Prec 0.38674 0.34959 0.82251 0.83636

## Rec 0.22082 0.13565 0.59937 0.58044

## F 0.28112 0.19545 0.69343 0.68529

## TN 1532.00000 1563.00000 1602.00000 1607.00000

## FN 247.00000 274.00000 127.00000 133.00000

## FP 111.00000 80.00000 41.00000 36.00000

## TP 70.00000 43.00000 190.00000 184.00000

In this chapter we discuss the following simple and educational (yet practically use-
ful) classification algorithms:

• decision trees,
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• binary logistic regression.

4.2 Decision Trees
4.2.1 Introduction
Note that a K-NN classifier discussed in the previous chapter is model-free. The
whole training set must be stored and referred to at all times.

Therefore, it doesn’t explain the data we have – we may use it solely for the purpose
of prediction.

Perhaps one of the most interpretable (and hence human-friendly) models consist
of decision rules of the form:

IF 𝑥𝑖,𝑗1 ≤ 𝑣1 AND…AND 𝑥𝑖,𝑗𝑟 ≤ 𝑣𝑟 THEN ̂𝑦𝑖 = 1.

These can be organised into a hierarchy for greater readability.

This idea inspired the notion of decision trees (Breiman et al. 1984).

-4 -2 0 2 4

-4
-2

0
2

4

X1

X2

Class 0
Class 1

X1 < -0.065

0
0.50

100%

0
0.19
53%

1
0.85
47%

yes no

Figure 4.2: The simplest decision tree for the synthetic 2D dataset and the corres-
ponding decision boundaries

Figure 4.2 depicts a very simple decision tree for the aforementioned synthetic data-
set. There is only one decision boundary (based on𝑋1) that splits data into the “left”
and “right” sides. Each tree node reports 3 pieces of information:

• dominating class (0 or 1)
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• (relative) proportion of 1s represented in a node
• (absolute) proportion of all observations in a node

Figures 4.3 and 4.4 depict trees withmore decision rules. Take amoment to contem-
plate how the corresponding decision boundaries changed with the introduction of
new decision rules.
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1
0.85
47%

yes no

Figure 4.3: A more complicated decision tree for the synthetic 2D dataset and the
corresponding decision boundaries

4.2.2 Example in R
Wewill use the rpart() function from the rpart package to build a classification tree.
library("rpart")

library("rpart.plot")

set.seed(123)

rpart() uses a formula (~) interface, hence it will be easier to feed it with data in a
data.frame form.
XY_train <- cbind(as.data.frame(X_train), Y=Y_train)

XY_test <- cbind(as.data.frame(X_test), Y=Y_test)

Fit and plot a decision tree, see Figure 4.5.
t1 <- rpart(Y~., data=XY_train, method="class")

rpart.plot(t1, tweak=1.1, fallen.leaves=FALSE, digits=3)

Wecanbuild less ormore complex trees byplayingwith the cpparameter, seeFigures
4.6 and 4.7.
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Figure 4.4: An evenmore complicated decision tree for the synthetic 2D dataset and
the corresponding decision boundaries
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Figure 4.5: A decision tree for the wines dataset
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# cp = complexity parameter, smaller � more complex tree

t2 <- rpart(Y~., data=XY_train, method="class", cp=0.1)

rpart.plot(t2, tweak=1.1, fallen.leaves=FALSE, digits=3)
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1
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yes no

Figure 4.6: A (simpler) decision tree for the wines dataset

# cp = complexity parameter, smaller � more complex tree

t3 <- rpart(Y~., data=XY_train, method="class", cp=0.00001)

rpart.plot(t3, tweak=1.1, fallen.leaves=FALSE, digits=3)

Trees with few decision rules actually are very nicely interpretable. On the other
hand, plotting of the complex ones is just hopeless; we should treat them as “black
boxes” instead.

Let’s make some predictions:
Y_pred <- predict(t1, XY_test, type="class")

get_metrics(Y_pred, Y_test)

## Acc Prec Rec F TN FN

## 0.92857 0.80623 0.73502 0.76898 1587.00000 84.00000

## FP TP

## 56.00000 233.00000

Y_pred <- predict(t2, XY_test, type="class")

get_metrics(Y_pred, Y_test)

## Acc Prec Rec F TN FN

## 0.90255 0.83871 0.49211 0.62028 1613.00000 161.00000

## FP TP
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Figure 4.7: A (more complex) decision tree for the wines dataset
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## 30.00000 156.00000

Y_pred <- predict(t3, XY_test, type="class")

get_metrics(Y_pred, Y_test)

## Acc Prec Rec F TN FN

## 0.91837 0.73433 0.77603 0.75460 1554.00000 71.00000

## FP TP

## 89.00000 246.00000

Remark. (*) Interestingly, rpart() also provides us with information about the im-
portance degrees of each independent variable.

t1$variable.importance/sum(t1$variable.importance)

## density residual.sugar fixed.acidity

## 0.6562490 0.1984221 0.0305167

## chlorides pH volatile.acidity

## 0.0215008 0.0209678 0.0192880

## sulphates total.sulfur.dioxide citric.acid

## 0.0184293 0.0140482 0.0119201

## free.sulfur.dioxide

## 0.0086579

4.2.3 ANote onDecision Tree Learning
Learning an optimal decision tree is a computationally hard problem – we need
some heuristics.

Examples:

• ID3 (Iterative Dichotomiser 3) (Quinlan 1986)
• C4.5 algorithm (Quinlan 1993)
• CART by Leo Breiman et al., (Breiman et al. 1984)

(**) Decision trees aremost often constructed by a greedy, top-down recursive partition-
ing, see., e.g., (Therneau & Atkinson 2019).

4.3 Binary Logistic Regression
4.3.1 Motivation
Recall that for a regression task, we fitted a very simple family ofmodels – the linear
ones – by minimising the sum of squared residuals.

This approach was pretty effective.
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(Very) theoretically, we could treat the class labels as numeric 0s and 1s and apply
regressionmodels in a binary classification task.
XY_train_r <- cbind(as.data.frame(X_train),

Y=as.numeric(Y_train)-1 # 0.0 or 1.0

)

XY_test_r <- cbind(as.data.frame(X_test),

Y=as.numeric(Y_test)-1 # 0.0 or 1.0

)

f_r <- lm(Y~density+residual.sugar+pH, data=XY_train_r)

Y_pred_r <- predict(f_r, XY_test_r)

summary(Y_pred_r)

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## -3.0468 -0.0211 0.1192 0.1645 0.3491 0.8892

The predicted outputs, �̂�, are arbitrary real numbers, but we can convert them to
binary ones by checking if, e.g., �̂� > 0.5.
Y_pred <- as.numeric(Y_pred_r>0.5)

round(get_metrics(Y_pred, XY_test_r$Y), 3)

## Acc Prec Rec F TN FN FP TP

## 0.927 0.865 0.647 0.740 1611.000 112.000 32.000 205.000

Remark. (*) The threshold 𝑇 = 0.5 could even be treated as a free parameter we
optimise for (w.r.t. different metrics over the validation sample), see Figure 4.8.
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Figure 4.8: Quality metrics for a binary classifier “Classify X as 1 if 𝑓 (𝑋) > 𝑇 and as
0 if 𝑓 (𝑋) ≤ 𝑇”
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Despite we can, we shouldn’t use linear regression for classification. Treating class
labels “0” and “1” as ordinary real numbers just doesn’t cut it –we intuitively feel that
we are doing something ugly. Luckily, there is a better, more meaningful approach
that still relies on a linear model, but has the right semantics.

4.3.2 LogisticModel
Inspired by this idea, we could try modelling the probability that a given point be-
longs to class 1.

This could also provide us with the confidence in our prediction.

Probability is a number in [0, 1], but the outputs of a linear model are arbitrary real
numbers.

However, we could transform those real-valued outputs by means of some function
𝜙 ∶ ℝ → [0, 1] (preferably S-shaped == sigmoid), so as to get:

Pr(𝑌 = 1|𝐗, 𝜷) = 𝜙(𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ⋯ + 𝛽𝑝𝑋𝑝).

Remark. The above reads as “Probability that 𝑌 is from class 1 given𝐗 and𝜷”.
A popular choice is the logistic sigmoid function, see Figure 4.9:

𝜙(𝑡) = 1
1 + 𝑒−𝑡 = 𝑒𝑡

1 + 𝑒𝑡 .
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Figure 4.9: The logistic sigmoid function, 𝜑
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Hence our model becomes:

𝑌 = 1
1 + 𝑒−(𝛽0+𝛽1𝑋1+𝛽2𝑋2+⋯+𝛽𝑝𝑋𝑝)

It is an instance of a generalised linearmodel (glm) (there are of course many other
possible generalisations).

4.3.3 Example in R
Let us first fit a simple (i.e., 𝑝 = 1) logistic regression model using the density vari-
able.The goodness-of-fit measure used in this problemwill be discussed a bit later.
(f <- glm(Y~density, data=XY_train, family=binomial("logit")))

##

## Call: glm(formula = Y ~ density, family = binomial("logit"), data = XY_train)

##

## Coefficients:

## (Intercept) density

## 1173 -1184

##

## Degrees of Freedom: 2937 Total (i.e. Null); 2936 Residual

## Null Deviance: 2670

## Residual Deviance: 1420 AIC: 1420

“logit” above denotes the inverse of the logistic sigmoid function. The fitted coeffi-
cients are equal to:
f$coefficients

## (Intercept) density

## 1173.2 -1184.2

Figure 4.10 depicts the obtainedmodel, which can be written as:

Pr(𝑌 = 1|𝑥) = 1
1 + 𝑒−(1173.21−1184.21𝑥)

with 𝑥 = density.

Some predicted probabilities:
round(head(predict(f, XY_test, type="response"), 12), 2)

## 1602 1605 1607 1608 1609 1613 1614 1615 1621 1622 1623 1627

## 0.01 0.01 0.00 0.02 0.03 0.36 0.00 0.31 0.36 0.06 0.03 0.00

We classify 𝑌 as 1 if the correspondingmembership probability is greater than 0.5.
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Figure 4.10: The probability that a given wine is a high-alcohol one given its density;
black and red points denote the actual observed data points from the class 0 and 1,
respectively

Y_pred <- as.numeric(predict(f, XY_test, type="response")>0.5)

get_metrics(Y_pred, Y_test)

## Acc Prec Rec F TN FN

## 0.89796 0.72763 0.58991 0.65157 1573.00000 130.00000

## FP TP

## 70.00000 187.00000

And now a fit based on some other input variables:
(f <- glm(Y~density+residual.sugar+total.sulfur.dioxide,

data=XY_train, family=binomial("logit")))

##

## Call: glm(formula = Y ~ density + residual.sugar + total.sulfur.dioxide,

## family = binomial("logit"), data = XY_train)

##

## Coefficients:

## (Intercept) density residual.sugar

## 2.50e+03 -2.53e+03 8.58e-01

## total.sulfur.dioxide

## 9.74e-03

##

## Degrees of Freedom: 2937 Total (i.e. Null); 2934 Residual
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## Null Deviance: 2670

## Residual Deviance: 920 AIC: 928

Y_pred <- as.numeric(predict(f, XY_test, type="response")>0.5)

get_metrics(Y_pred, Y_test)

## Acc Prec Rec F TN FN

## 0.93214 0.82394 0.73817 0.77870 1593.00000 83.00000

## FP TP

## 50.00000 234.00000

Exercise 4.1 Try fitting different models based on other sets of features.

4.3.4 Loss Function: Cross-entropy
The fitting of the model can be written as an optimisation task:

min
𝛽0,𝛽1,…,𝛽𝑝∈ℝ

1
𝑛

𝑛
∑
𝑖=1

𝜖 ( ̂𝑦𝑖, 𝑦𝑖)

where 𝜖( ̂𝑦𝑖, 𝑦𝑖) denotes the penalty that measures the “difference” between the true
𝑦𝑖 and its predicted version ̂𝑦𝑖 = Pr(𝑌 = 1|𝐱𝑖,⋅, 𝜷).

In the ordinary regression, we used the squared residual 𝜖( ̂𝑦𝑖, 𝑦𝑖) = ( ̂𝑦𝑖 − 𝑦𝑖)2. In
logistic regression (the kind of a classifier we are interested in right now), we use
the cross-entropy (a.k.a. log-loss, binary cross-entropy),

𝜖( ̂𝑦𝑖, 𝑦𝑖) = − (𝑦𝑖 log ̂𝑦𝑖 + (1 − 𝑦𝑖) log(1 − ̂𝑦𝑖))

The corresponding loss function has not only many nice statistical properties (** re-
lated to maximum likelihood estimation etc.) but also an intuitive interpretation.

Note that the predicted ̂𝑦𝑖 is in (0, 1) and the true 𝑦𝑖 equals to either 0 or 1. Recall
also that log 𝑡 ∈ (−∞, 0) for 𝑡 ∈ (0, 1).Therefore, the formula for 𝜖( ̂𝑦𝑖, 𝑦𝑖) has a very
intuitive behaviour:

• if true 𝑦𝑖 = 1, then the penalty becomes 𝜖( ̂𝑦𝑖, 1) = − log( ̂𝑦𝑖)

– ̂𝑦𝑖 is the probability that the classified input is indeed from class 1
– we’d be happy if the classifier outputted ̂𝑦𝑖 ≃ 1 in this case; this is not penalised
as− log(𝑡) → 0 as 𝑡 → 1

– however, if the classifier is totally wrong, i.e., it thinks that ̂𝑦𝑖 ≃ 0, then the
penalty will be very high, as− log(𝑡) → +∞ as 𝑡 → 0

• if true 𝑦𝑖 = 0, then the penalty becomes 𝜖( ̂𝑦𝑖, 0) = − log(1 − ̂𝑦𝑖)

– 1 − ̂𝑦𝑖 is the predicted probability that the input is from class 0
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– we penalise heavily the casewhere 1− ̂𝑦𝑖 is small (we’d be happy if the classifier
was sure that 1 − ̂𝑦𝑖 ≃ 1, because this is the ground-truth)

(*) Having said that, let’s expand the above formulae. The task of minimising cross-
entropy in the binary logistic regression can be written as min𝜷∈ℝ𝑝+1 𝐸(𝜷)with:

𝐸(𝜷) = − 1
𝑛

𝑛
∑
𝑖=1

𝑦𝑖 log Pr(𝑌 = 1|𝐱𝑖,⋅, 𝜷) + (1 − 𝑦𝑖) log(1 − Pr(𝑌 = 1|𝐱𝑖,⋅, 𝜷))

Taking into account that:

Pr(𝑌 = 1|𝐱𝑖,⋅, 𝜷) = 1
1 + 𝑒−(𝛽0+𝛽1𝑥𝑖,1+⋯+𝛽𝑝𝑥𝑖,𝑝) ,

we get:

𝐸(𝜷) = − 1
𝑛

𝑛
∑
𝑖=1

⎛⎜⎜⎜⎜⎜⎜⎜
⎝

𝑦𝑖 log
1

1 + 𝑒−(𝛽0+𝛽1𝑥𝑖,1+⋯+𝛽𝑝𝑥𝑖,𝑝)

+(1 − 𝑦𝑖) log
𝑒−(𝛽0+𝛽1𝑥𝑖,1+⋯+𝛽𝑝𝑥𝑖,𝑝)

1 + 𝑒−(𝛽0+𝛽1𝑥𝑖,1+⋯+𝛽𝑝𝑥𝑖,𝑝)

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

.

Logarithms are really practitioner-friendly functions, it holds:

• log 1 = 0,
• log 𝑒 = 1 (where 𝑒 ≃ 2.71828 is the Euler constant; note that by writing log we
mean the natural a.k.a. base-𝑒 logarithm),

• log 𝑥𝑦 = log 𝑥 + log 𝑦,
• log 𝑥𝑝 = 𝑝 log 𝑥 (this is log(𝑥𝑝), not (log 𝑥)𝑝).

These facts imply, amongst others that:

• log 𝑒𝑥 = 𝑥 log 𝑒 = 𝑥,
• log 𝑥

𝑦 = log 𝑥𝑦−1 = log 𝑥 + log 𝑦−1 = log 𝑥 − log 𝑦 (of course for 𝑦 ≠ 0),
• log 1

𝑦 = − log 𝑦

and so forth.Therefore, based on the fact that 1/(1 + 𝑒−𝑥) = 𝑒𝑥/(1 + 𝑒𝑥), the above
optimisation problem can be rewritten as:

𝐸(𝜷) = 1
𝑛

𝑛
∑
𝑖=1

⎛⎜⎜
⎝

𝑦𝑖 log(1 + 𝑒−(𝛽0+𝛽1𝑥𝑖,1+⋯+𝛽𝑝𝑥𝑖,𝑝))
+(1 − 𝑦𝑖) log(1 + 𝑒+(𝛽0+𝛽1𝑥𝑖,1+⋯+𝛽𝑝𝑥𝑖,𝑝))

⎞⎟⎟
⎠

or, if someone prefers:
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𝐸(𝜷) = 1
𝑛

𝑛
∑
𝑖=1

((1 − 𝑦𝑖) (𝛽0 + 𝛽1𝑥𝑖,1 + ⋯ + 𝛽𝑝𝑥𝑖,𝑝) + log(1 + 𝑒−(𝛽0+𝛽1𝑥𝑖,1+⋯+𝛽𝑝𝑥𝑖,𝑝))) .

It turns out that there is no analytical formula for the optimal set of parameters
(𝛽0, 𝛽1, … , 𝛽𝑝 minimising the log-loss). In the chapter on optimisation, we shall see
that the solution to the logistic regression can be solved numerically by means of
quite simple iterative algorithms. The two expanded formulae have lost the appeal-
ing interpretation of the original one, however, it’s more numerically well-behaving,
see, e.g., the log1p() function in base R or, even better, fermi_dirac_0() in the gsl
package.

4.4 Exercises in R
4.4.1 EdStats – PreparingData
In this exercise, we will prepare the EdStats dataset for further analysis.The file ed-
stats_2019.csv provides us with many country-level Education Statistics extracted
from theWorld Bank’s Databank, see https://databank.worldbank.org/. Databank
aggregates information from such sources as the UNESCO Institute for Statistics,
OECD Programme for International Student Assessment (PISA) etc. The official de-
scription reads:

“The World Bank EdStats Query holds around 2,500 internationally
comparable education indicators for access, progression, comple-
tion, literacy, teachers, population, and expenditures. The indicat-
ors cover the education cycle from pre-primary to tertiary education.
The query also holds learning outcome data from international learn-
ing assessments (PISA, TIMSS, etc.), equity data fromhousehold sur-
veys, and projection data to 2050.”

edstats_2019.csv was compiled on 24 April 2020 and lists indicators reported
between 2010 and 2019. First, let’s load the dataset:
edstats_2019 <- read.csv("datasets/edstats_2019.csv",

comment.char="#")

head(edstats_2019)

https://databank.worldbank.org/
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## CountryName CountryCode

## 1 Afghanistan AFG

## 2 Afghanistan AFG

## 3 Afghanistan AFG

## 4 Afghanistan AFG

## 5 Afghanistan AFG

## 6 Afghanistan AFG

## Series

## 1 Government expenditure on education as % of GDP (%)

## 2 Gross enrolment ratio, primary, female (%)

## 3 Net enrolment rate, primary, female (%)

## 4 Primary completion rate, both sexes (%)

## 5 PISA: Mean performance on the mathematics scale

## 6 PISA: Mean performance on the mathematics scale. Female

## Code Y2010 Y2011 Y2012 Y2013 Y2014 Y2015

## 1 SE.XPD.TOTL.GD.ZS 3.4794 3.462 2.6042 3.4545 3.6952 3.2558

## 2 SE.PRM.ENRR.FE 80.6355 80.937 86.3288 85.9021 86.7296 83.5044

## 3 SE.PRM.NENR.FE NA NA NA NA NA NA

## 4 SE.PRM.CMPT.ZS NA NA NA NA NA NA

## 5 LO.PISA.MAT NA NA NA NA NA NA

## 6 LO.PISA.MAT.FE NA NA NA NA NA NA

## Y2016 Y2017 Y2018 Y2019

## 1 4.2284 4.0589 NA NA

## 2 82.5584 82.0803 82.850 NA

## 3 NA NA NA NA

## 4 79.9346 84.4150 85.625 NA

## 5 NA NA NA NA

## 6 NA NA NA NA

This data frame is in a “long” format, where each indicator for each country is given
in its own row. Note that some indicators are not surveyed/updated every year.

Exercise 4.2 Convert edstats_2019 to a “wide” format (one row per country, each indicator
in its own column) based on themost recent observed indicators.

Solution.

First we need a function that returns the last non-missing value in a given numeric vector. To
recall, na.omit(), removes all missing values and tail() can be used to access the last obser-
vation easily. Unfortunately, if the vector is consists of missing values only, the removal of NAs
leads to an empty sequence.However, the trickwe can use is that by extracting the first element
from an empty vector by using [...], we get a NA.
last_non_na <- function(x) tail(na.omit(x), 1)[1]

last_non_na(c(1, 2, NA, 3,NA,NA)) # example 1

## [1] 3
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last_non_na(c(NA,NA,NA,NA,NA,NA)) # example 2

## [1] NA

Let’s extract the most recent indicator from each row in edstats_2019.
values <- apply(edstats_2019[-(1:4)], 1, last_non_na)

head(values)

## [1] 4.0589 82.8503 NA 85.6253 NA NA

Now,we shall create a data framewith 3 columns: nameof the country, indicator code, indicator
value. Let’s order it with respect to the first two columns.
edstats_2019 <- edstats_2019[c("CountryName", "Code")]

# add a new column at the righthand end:

edstats_2019["Value"] <- values

edstats_2019 <- edstats_2019[

order(edstats_2019$CountryName, edstats_2019$Code), ]

head(edstats_2019)

## CountryName Code Value

## 59 Afghanistan HD.HCI.AMRT 0.7797

## 57 Afghanistan HD.HCI.AMRT.FE 0.8018

## 58 Afghanistan HD.HCI.AMRT.MA 0.7597

## 53 Afghanistan HD.HCI.EYRS 8.5800

## 51 Afghanistan HD.HCI.EYRS.FE 6.7300

## 52 Afghanistan HD.HCI.EYRS.MA 9.2100

To convert the data frame to a “wide” format, many readers would choose the pivot_wider()
function from the tidyr package (amongst others).
library("tidyr")

edstats <- as.data.frame(

pivot_wider(edstats_2019, names_from="Code", values_from="Value")

)

edstats[1, 1:7]

## CountryName HD.HCI.AMRT HD.HCI.AMRT.FE HD.HCI.AMRT.MA HD.HCI.EYRS

## 1 Afghanistan 0.7797 0.8018 0.7597 8.58

## HD.HCI.EYRS.FE HD.HCI.EYRS.MA

## 1 6.73 9.21

On a side note (*), the above solution is of course perfectly fine and we can now live long and
prosper. Nevertheless, we are here to learn new skills, so let’s note that it has the drawback that
it required us to search for the answer on the internet (and go through many “answers” that
actually don’t work). If we are not converting between the long and the wide formats on a daily
basis, this might not be worth the hassle (moreover, there’s no guarantee that this function will
work the same way in the future, that the package we relied on will provide the same API etc.).
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Instead, by relaying on a bit deeper knowledge of R programming (which we already have, see
Appendices A-D of our book), we could implement the relevant procedure manually.The down-
side is that this requires us to get out of our comfort zone and… think.

First, let’s generate the list of all countries and indicators:
countries <- unique(edstats_2019$CountryName)

head(countries)

## [1] "Afghanistan" "Albania" "Algeria" "American Samoa"

## [5] "Andorra" "Angola"

indicators <- unique(edstats_2019$Code)

head(indicators)

## [1] "HD.HCI.AMRT" "HD.HCI.AMRT.FE" "HD.HCI.AMRT.MA" "HD.HCI.EYRS"

## [5] "HD.HCI.EYRS.FE" "HD.HCI.EYRS.MA"

Second, note that edstats_2019 gives all the possible combinations (pairs) of the indexes and
countries:
nrow(edstats_2019) # number of rows in edstats_2019

## [1] 23852

length(countries)*length(indicators) # number of pairs

## [1] 23852

Lookingat thenumbers in theValue columnofedstats_2019, thiswill exactly provideuswith
our desired “wide” data matrix, if we read it in a rowwise manner. Hence, we can use mat-
rix(..., byrow=TRUE) to generate it:
# edstats_2019 is already sorted w.r.t. CountryName and Code

edstats2 <- cbind(

CountryName=countries, # first column

as.data.frame(

matrix(edstats_2019$Value,

byrow=TRUE,

ncol=length(indicators),

dimnames=list(NULL, indicators)

)))

identical(edstats, edstats2)

## [1] TRUE

■
Exercise 4.3 Export edstats to a CSV file.

Solution.
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This can be done as follows:
write.csv(edstats, "edstats_2019_wide.csv", row.names=FALSE)

We didn’t export the row names, because they’re useless in our case.

■
Exercise 4.4 Explore edstats_meta.csv to understand the meaning of the EdStats indicat-
ors.

Solution.

First, let’s load the dataset:
meta <- read.csv("datasets/edstats_meta.csv")

names(meta) # column names

## [1] "Code" "Series" "Definition" "Source" "Topic"

The Series column deciphers each indicator’s meaning. For instance, LO.PISA.MAT gives:
meta[meta$Code=="LO.PISA.MAT", "Series"]

## [1] "PISA: Mean performance on the mathematics scale"

To get more information, we can take a look at the Definition column:
meta[meta$Code=="LO.PISA.MAT", "Definition"]

which reads: Average score of 15-year-old students on the PISA mathematics scale.
The metric for the overall mathematics scale is based on a mean for OECD coun-
tries of 500 points and a standard deviation of 100 points. Data reflects country per-
formance in the stated year according to PISA reports, but may not be comparable
across years or countries. Consult the PISA website for more detailed information:
http://www.oecd.org/pisa/.

■

4.4.2 EdStats –Where Girls Are Better atMathsThanBoys?
In this task we will consider the “wide” version of the EdStats dataset:
edstats <- read.csv("datasets/edstats_2019_wide.csv",

comment.char="#")

edstats[1, 1:6]

## CountryName HD.HCI.AMRT HD.HCI.AMRT.FE HD.HCI.AMRT.MA HD.HCI.EYRS

## 1 Afghanistan 0.7797 0.8018 0.7597 8.58

## HD.HCI.EYRS.FE

## 1 6.73

http://www.oecd.org/pisa/
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meta <- read.csv("datasets/edstats_meta.csv")

This dataset is small, moreover, we’ll be more interested in the description (under-
standing) of data, not prediction of the response variable to unobserved samples.
Note that we have the population of theWorld countries at hand here (new countries
do not arise on a daily basis). Therefore, a train-test split won’t be performed.

Exercise 4.5 Add a 0/1 factor-type variable girls_rule_maths that is equal to 1 if and only
if a country’s average score of 15-year-old female students on the PISA mathematics scale is
greater than the corresponding indicator for the male ones.

Solution.

Recall that a conversion of a logical value to a number yields 1 for TRUE and 0 for FALSE. Hence:
edstats$girls_rule_maths <-

factor(as.numeric(

edstats$LO.PISA.MAT.FE>edstats$LO.PISA.MAT.MA

))

head(edstats$girls_rule_maths, 10)

## [1] <NA> 1 1 <NA> <NA> <NA> <NA> <NA> 0 <NA>

## Levels: 0 1

Unfortunately, there are manymissing values in the dataset.More precisely:
sum(is.na(edstats$girls_rule_maths)) # count

## [1] 187

mean(is.na(edstats$girls_rule_maths)) # proportion

## [1] 0.69776

Countries such as Egypt, India, Iran or Venezuela are not amongst the 79 members of the Pro-
gramme for International Student Assessment.Thus, we’ll have to deal with the data we have.

The percentage of counties where “girls rule” is equal to:
mean(edstats$girls_rule_maths==1, na.rm=TRUE)

## [1] 0.33333

Here is the list of those counties:
as.character(na.omit(

edstats[edstats$girls_rule_maths==1, "CountryName"]

))

## [1] "Albania" "Algeria"

## [3] "Brunei Darussalam" "Bulgaria"

## [5] "Cyprus" "Dominican Republic"
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## [7] "Finland" "Georgia"

## [9] "Hong Kong SAR, China" "Iceland"

## [11] "Indonesia" "Israel"

## [13] "Jordan" "Lithuania"

## [15] "Malaysia" "Malta"

## [17] "Moldova" "North Macedonia"

## [19] "Norway" "Philippines"

## [21] "Qatar" "Saudi Arabia"

## [23] "Sweden" "Thailand"

## [25] "Trinidad and Tobago" "United Arab Emirates"

## [27] "Vietnam"

■
Exercise 4.6 Learn a decision tree that distinguishes between the countries where girls are
better at maths than boys and assess the quality of this classifier.

Solution.

Let’s first create a subset of edstats that doesn’t include the country names as well as the boys’
and girls’ math scores.
edstats_subset <- edstats[!(names(edstats) %in%

c("CountryName", "LO.PISA.MAT.FE", "LO.PISA.MAT.MA"))]

Fitting and plotting (see Figure 4.11) of the tree can be performed as follows:
library("rpart")

library("rpart.plot")

tree <- rpart(girls_rule_maths~., data=edstats_subset,

method="class", model=TRUE)

rpart.plot(tree)

The variables included in the model are:

Note that the decision rules are well-interpretable, we can make a whole story around it.
Whether or not it is actually true – is a different… story.

To compute the basic classifier performance scores, let’s recall the get_metrics() function:
get_metrics <- function(Y_pred, Y_test)

{

C <- table(Y_pred, Y_test) # confusion matrix

stopifnot(dim(C) == c(2, 2))

c(Acc=(C[1,1]+C[2,2])/sum(C), # accuracy

Prec=C[2,2]/(C[2,2]+C[2,1]), # precision

Rec=C[2,2]/(C[2,2]+C[1,2]), # recall

F=C[2,2]/(C[2,2]+0.5*C[1,2]+0.5*C[2,1]), # F-measure

# Confusion matrix items:
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LO.PISA.REA.MA >= 406

LO.PISA.SCI < 409

0
0.33

100%

0
0.17
65%

1
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0
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20%

1
1.00
15%

yes no

Figure 4.11: A decision tree explaining the girls_rule_maths variable

TN=C[1,1], FN=C[1,2],

FP=C[2,1], TP=C[2,2]

) # return a named vector

}

Nowwe can judge the tree’s character:
Y_pred <- predict(tree, edstats_subset, type="class")

get_metrics(Y_pred, edstats_subset$girls_rule_maths)

## Acc Prec Rec F TN FN FP TP

## 0.81481 1.00000 0.44444 0.61538 54.00000 15.00000 0.00000 12.00000

■
Exercise 4.7 Learn a decision tree that this time doesn’t rely on any of the PISA indicators.

Solution.

Let’s remove the unwanted variables:
edstats_subset <- edstats[!(names(edstats) %in%

c("LO.PISA.MAT", "LO.PISA.MAT.FE", "LO.PISA.MAT.MA",

"LO.PISA.REA", "LO.PISA.REA.FE", "LO.PISA.REA.MA",

"LO.PISA.SCI", "LO.PISA.SCI.FE", "LO.PISA.SCI.MA",

"CountryName"))]



Classification with Trees and LinearModels 131

On a side note, this could be done more easily by calling, e.g.,
stri_startswith_fixed(names(edstats), "LO.PISA") from the stringi package.

Fitting and plotting (see Figure 4.12) of the tree:
tree <- rpart(girls_rule_maths~., data=edstats_subset,

method="class", model=TRUE)

rpart.plot(tree)

SE.TER.ENRR.MA >= 43

SE.SEC.NENR.MA < 95 HD.HCI.AMRT.FE >= 0.92

0
0.33

100%

0
0.23
74%

0
0.10
52%

1
0.56
22%

1
0.62
26%

0
0.38
16%

1
1.00
10%

yes no

Figure 4.12: Another decision tree explaining the girls_rule_maths variable

Performancemetrics:
Y_pred <- predict(tree, edstats, type="class")

get_metrics(Y_pred, edstats_subset$girls_rule_maths)

## Acc Prec Rec F TN FN FP TP

## 0.79012 0.69231 0.66667 0.67925 46.00000 9.00000 8.00000 18.00000

It’s interesting to note that some of the goodness-of-fit measures are actually higher now.

The variables included in the model are:

■

4.4.3 EdStats andWorld Factbook – Joining Forces
In the course of our data science journey, we have considered two datasets dealing
with country-level indicators: theWorld Factbook andWorld Bank’s EdStats.
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factbook <- read.csv("datasets/world_factbook_2020.csv",

comment.char="#")

edstats <- read.csv("datasets/edstats_2019_wide.csv",

comment.char="#")

Let’s combine the information they provide and see if we come up with a better
model of where girls’ math scores are higher.

Exercise 4.8 Some country names in one dataset don’t match those in the other one, for in-
stance: Czech Republic vs. Czechia, Myanmar vs. Burma, etc. Resolve these conflicts as best
you can.

Solution.

To get a list of the mismatched country names, we can call either:
factbook$country[!(factbook$country %in% edstats$CountryName)]

or:
edstats$CountryName[!(edstats$CountryName %in% factbook$country)]

Unfortunately, the data need to be cleanedmanually – it’s a tedious task.The following consists
of what we hope are the best matches between the two datasets (yet, the list is not perfect; in
particular, the Republic of NorthMacedonia is completely missing in one of the datasets):
from_to <- matrix(ncol=2, byrow=TRUE, c(

# FROM (edstats) # TO (factbook)

"Brunei Darussalam" , "Brunei" ,

"Congo, Dem. Rep." , "Congo, Democratic Republic of the" ,

"Congo, Rep." , "Congo, Republic of the" ,

"Czech Republic" , "Czechia" ,

"Egypt, Arab Rep." , "Egypt" ,

"Hong Kong SAR, China" , "Hong Kong" ,

"Iran, Islamic Rep." , "Iran" ,

"Korea, Dem. People’s Rep." , "Korea, North" ,

"Korea, Rep." , "Korea, South" ,

"Kyrgyz Republic" , "Kyrgyzstan" ,

"Lao PDR" , "Laos" ,

"Macao SAR, China" , "Macau" ,

"Micronesia, Fed. Sts." , "Micronesia, Federated States of" ,

"Myanmar" , "Burma" ,

"Russian Federation" , "Russia" ,

"Slovak Republic" , "Slovakia" ,

"St. Kitts and Nevis" , "Saint Kitts and Nevis" ,

"St. Lucia" , "Saint Lucia" ,

"St. Martin (French part)" , "Saint Martin" ,

"St. Vincent and the Grenadines", "Saint Vincent and the Grenadines" ,
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"Syrian Arab Republic" , "Syria" ,

"Venezuela, RB" , "Venezuela" ,

"Virgin Islands (U.S.)" , "Virgin Islands" ,

"Yemen, Rep." , "Yemen"

))

Conversion of the names:
for (i in 1:nrow(from_to)) {

edstats$CountryName[edstats$CountryName==from_to[i,1]] <- from_to[i,2]

}

On a side note (*), this could be done with a single call to a function in the stringi package:
library("stringi")

edstats$CountryName <- stri_replace_all_fixed(edstats$CountryName,

from_to[,1], from_to[,2], vectorize_all=FALSE)

■
Exercise 4.9 Merge (join) the two datasets based on the country names.

Solution.

This can be done bymeans of the merge() function.
edbook <- merge(edstats, factbook, by.x="CountryName", by.y="country")

ncol(edbook) # how many columns we have now

## [1] 157

■
Exercise 4.10 Learn a decision tree that distinguishes between the countries where girls are
better at maths than boys and assess the quality of this classifier.

Solution.

We proceed as in one of the previous exercises:
edbook$girls_rule_maths <-

factor(as.numeric(

edbook$LO.PISA.MAT.FE>edbook$LO.PISA.MAT.MA

))

edbook_subset <- edbook[!(names(edbook) %in%

c("CountryName", "LO.PISA.MAT.FE", "LO.PISA.MAT.MA"))]

Fitting and plotting (see Figure 4.13):
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library("rpart")

library("rpart.plot")

tree <- rpart(girls_rule_maths~., data=edbook_subset,

method="class", model=TRUE)

rpart.plot(tree)

LO.PISA.REA.MA >= 406

education_expenditures < 5.7 LO.PISA.SCI < 409

0
0.33

100%

0
0.17
65%

0
0.07
52%

1
0.55
14%

1
0.64
35%

0
0.38
20%

1
1.00
15%

yes no

Figure 4.13: Yet another decision tree explaining the girls_rule_maths variable

Performancemetrics:
Y_pred <- predict(tree, edbook_subset, type="class")

get_metrics(Y_pred, edbook_subset$girls_rule_maths)

## Acc Prec Rec F TN FN FP TP

## 0.82716 0.78261 0.66667 0.72000 49.00000 9.00000 5.00000 18.00000

The variables included in the model are:

This is… not at all enlightening. Rest assured that experts in education or econometrics for
whom we work in this (imaginary) project would raise many questions at this very point.
Merely applying some computational procedure on a dataset doesn’t cut it; it’s too early to ask
for a paycheque. Classifiers are just blind tools in our gentle yet firmhands; new questions are
risen, new answers must be sought. Further explorations are of course left as an exercise to the
kind reader.

■

4.4.4 EdStats – Fitting of Binary Logistic RegressionModels
In this task we’re going to consider the “wide” version of the EdStats dataset again:
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edstats <- read.csv("datasets/edstats_2019_wide.csv",

comment.char="#")

Let’s re-add the girls_rule_maths column just as in the previous exercise.Then, let’s
create a subset of edstats that doesn’t include the country names as well as the boys’
and girls’ math scores.
edstats$girls_rule_maths <-

factor(as.numeric(

edstats$LO.PISA.MAT.FE>edstats$LO.PISA.MAT.MA

))

edstats_subset <- edstats[!(names(edstats) %in%

c("CountryName", "LO.PISA.MAT.FE", "LO.PISA.MAT.MA"))]

Exercise 4.11 Fit and assess a logistic regression model for girls_rule_maths as a function
of LO.PISA.REA.MA+LO.PISA.SCI.

Solution.

Fitting of the model:
(f1 <- glm(girls_rule_maths~LO.PISA.REA.MA+LO.PISA.SCI,

data=edstats_subset, family=binomial("logit")))

##

## Call: glm(formula = girls_rule_maths ~ LO.PISA.REA.MA + LO.PISA.SCI,

## family = binomial("logit"), data = edstats_subset)

##

## Coefficients:

## (Intercept) LO.PISA.REA.MA LO.PISA.SCI

## 3.0927 -0.0882 0.0755

##

## Degrees of Freedom: 80 Total (i.e. Null); 78 Residual

## (187 observations deleted due to missingness)

## Null Deviance: 103

## Residual Deviance: 77.9 AIC: 83.9

Performancemetrics:
Y_pred <- as.numeric(predict(f1, edstats_subset, type="response")>0.5)

get_metrics(Y_pred, edstats_subset$girls_rule_maths)

## Acc Prec Rec F TN FN FP TP

## 0.79012 0.75000 0.55556 0.63830 49.00000 12.00000 5.00000 15.00000

Relate the above numbers to those reported for the fitted decision trees.

Note that the fittedmodel is nicely interpretable: the lower the boys’ average result on the Read-
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ing Scale or the higher the country’s result on the Science Scale, the higher the probability for
girls_rule_maths:
example_X <- data.frame(

LO.PISA.REA.MA=c(475, 450, 475, 500),

LO.PISA.SCI= c(525, 525, 550, 500)

)

cbind(example_X,

`Pr(Y=1)`=predict(f1, example_X, type="response"))

## LO.PISA.REA.MA LO.PISA.SCI Pr(Y=1)

## 1 475 525 0.703342

## 2 450 525 0.955526

## 3 475 550 0.939986

## 4 500 500 0.038094

■
Exercise 4.12 (*) Fit and assess a logistic regressionmodel for girls_rule_maths featuring
all LO.PISA.REA* and LO.PISA.SCI* as independent variables.

Solution.

Model fitting:
(f2 <- glm(girls_rule_maths~LO.PISA.REA+LO.PISA.REA.FE+LO.PISA.REA.MA+

LO.PISA.SCI+LO.PISA.SCI.FE+LO.PISA.SCI.MA,

data=edstats_subset, family=binomial("logit")))

## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred

##

## Call: glm(formula = girls_rule_maths ~ LO.PISA.REA + LO.PISA.REA.FE +

## LO.PISA.REA.MA + LO.PISA.SCI + LO.PISA.SCI.FE + LO.PISA.SCI.MA,

## family = binomial("logit"), data = edstats_subset)

##

## Coefficients:

## (Intercept) LO.PISA.REA LO.PISA.REA.FE LO.PISA.REA.MA

## -2.265 1.268 -0.544 -0.734

## LO.PISA.SCI LO.PISA.SCI.FE LO.PISA.SCI.MA

## 1.269 -0.157 -1.112

##

## Degrees of Freedom: 80 Total (i.e. Null); 74 Residual

## (187 observations deleted due to missingness)

## Null Deviance: 103

## Residual Deviance: 33 AIC: 47

The mysterious fitted probabilities numerically 0 or 1 occurred warning de-
notes convergence problems of the underlying optimisation (fitting) procedure: at least one of
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the model coefficients has had a fairly large order of magnitude and hence the fitted probabil-
ities has come very close to 0 or 1. Recall that the probabilities are modelled by means of the
logistic sigmoid function applied on the output of a linear combination of the dependent vari-
ables.Moreover, cross-entropy features a logarithm, and log 0 = −∞.

This can be due to the fact that all the variables in the model are very correlated with each
other (multicollinearity; an ill-conditionedproblem).Theobtained solutionmightbeunstable –
theremight bemany local optimaandhence, different parameter vectorsmight be equally good.
Moreover, it is likely that a small change in one of the inputs might lead to large change in the
estimatedmodel (* normally, we would attack this problem by employing some regularisation
techniques).

Of course, themodel’s performancemetrics can still be computed, but then it’s better if we treat
it as a black box.Or, even better, reduce the number of independent variables and come upwith
a simpler model that serves its purpose better than this one.
Y_pred <- as.numeric(predict(f2, edstats_subset, type="response")>0.5)

get_metrics(Y_pred, edstats_subset$girls_rule_maths)

## Acc Prec Rec F TN FN FP TP

## 0.86420 0.83333 0.74074 0.78431 50.00000 7.00000 4.00000 20.00000

■

4.4.5 EdStats – Variable Selection in Binary Logistic Regression (*)
Back to our girls_rule_maths example, we still have so much to learn!
edstats <- read.csv("datasets/edstats_2019_wide.csv",

comment.char="#")

edstats$girls_rule_maths <-

factor(as.numeric(

edstats$LO.PISA.MAT.FE>edstats$LO.PISA.MAT.MA

))

edstats_subset <- edstats[!(names(edstats) %in%

c("CountryName", "LO.PISA.MAT.FE", "LO.PISA.MAT.MA"))]

Exercise 4.13 Construct a binary logistic regressionmodel via forward selection of variables.

Solution.

Just as in the linear regression case, we can rely on the step() function.
model_empty <- girls_rule_maths~1

(model_full <- formula(model.frame(girls_rule_maths~.,

data=edstats_subset)))

## girls_rule_maths ~ HD.HCI.AMRT + HD.HCI.AMRT.FE + HD.HCI.AMRT.MA +

## HD.HCI.EYRS + HD.HCI.EYRS.FE + HD.HCI.EYRS.MA + HD.HCI.HLOS +
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## HD.HCI.HLOS.FE + HD.HCI.HLOS.MA + HD.HCI.MORT + HD.HCI.MORT.FE +

## HD.HCI.MORT.MA + HD.HCI.OVRL + HD.HCI.OVRL.FE + HD.HCI.OVRL.MA +

## IT.CMP.PCMP.P2 + IT.NET.USER.P2 + LO.PISA.MAT + LO.PISA.REA +

## LO.PISA.REA.FE + LO.PISA.REA.MA + LO.PISA.SCI + LO.PISA.SCI.FE +

## LO.PISA.SCI.MA + NY.GDP.MKTP.CD + NY.GDP.PCAP.CD + NY.GDP.PCAP.PP.CD +

## NY.GNP.PCAP.CD + NY.GNP.PCAP.PP.CD + SE.COM.DURS + SE.PRM.CMPT.FE.ZS +

## SE.PRM.CMPT.MA.ZS + SE.PRM.CMPT.ZS + SE.PRM.ENRL.TC.ZS +

## SE.PRM.ENRR + SE.PRM.ENRR.FE + SE.PRM.ENRR.MA + SE.PRM.NENR +

## SE.PRM.NENR.FE + SE.PRM.NENR.MA + SE.PRM.PRIV.ZS + SE.SEC.ENRL.TC.ZS +

## SE.SEC.ENRR + SE.SEC.ENRR.FE + SE.SEC.ENRR.MA + SE.SEC.NENR +

## SE.SEC.NENR.MA + SE.SEC.PRIV.ZS + SE.TER.ENRR + SE.TER.ENRR.FE +

## SE.TER.ENRR.MA + SE.TER.PRIV.ZS + SE.XPD.TOTL.GD.ZS + SL.TLF.ADVN.FE.ZS +

## SL.TLF.ADVN.MA.ZS + SL.TLF.ADVN.ZS + SP.POP.TOTL + SP.POP.TOTL.FE.IN +

## SP.POP.TOTL.MA.IN + SP.PRM.TOTL.FE.IN + SP.PRM.TOTL.IN +

## SP.PRM.TOTL.MA.IN + SP.SEC.TOTL.FE.IN + SP.SEC.TOTL.IN +

## SP.SEC.TOTL.MA.IN + UIS.PTRHC.56 + UIS.SAP.CE + UIS.SAP.CE.F +

## UIS.SAP.CE.M + UIS.X.PPP.1.FSGOV + UIS.X.PPP.2T3.FSGOV +

## UIS.X.PPP.5T8.FSGOV + UIS.X.US.1.FSGOV + UIS.X.US.2T3.FSGOV +

## UIS.X.US.5T8.FSGOV + UIS.XGDP.1.FSGOV + UIS.XGDP.23.FSGOV +

## UIS.XGDP.56.FSGOV + UIS.XUNIT.GDPCAP.1.FSGOV + UIS.XUNIT.GDPCAP.23.FSGOV +

## UIS.XUNIT.GDPCAP.5T8.FSGOV + UIS.XUNIT.PPP.1.FSGOV.FFNTR +

## UIS.XUNIT.PPP.2T3.FSGOV.FFNTR + UIS.XUNIT.PPP.5T8.FSGOV.FFNTR +

## UIS.XUNIT.US.1.FSGOV.FFNTR + UIS.XUNIT.US.23.FSGOV.FFNTR +

## UIS.XUNIT.US.5T8.FSGOV.FFNTR

f <- step(glm(model_empty, data=edstats_subset, family=binomial("logit")),

scope=model_full, direction="forward")

## Start: AIC=105.12

## girls_rule_maths ~ 1

## Error in model.matrix.default(Terms, m, contrasts.arg = object$contrasts): variable 1 has no levels

Melbourne, we have a problem! Our dataset has too many missing values, and those cannot
be present in a logistic regression model (it’s based on a linear combination of variables, and
sums/products involving NAs yield NAs…).

Lookingat themanual of?step, we see that the defaultNAhandling is viana.omit(), and that,
when applied on a data frame, results in the removal of all the rows, where there is at least one
NA. Sadly, it’s too invasive.

We should get rid of the data blanks manually. First, definitely, we should remove all the rows
where girls_rule_maths is unknown:
edstats_subset <-

edstats_subset[!is.na(edstats_subset$girls_rule_maths),]

We are about to apply the forward selection process, whose purpose is to choose variables for
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a model. Therefore, instead of removing any more rows, we should remove the… columns with
missing data:
edstats_subset <-

edstats_subset[,colSums(sapply(edstats_subset, is.na))==0]

(*)Alternatively,we couldapply some techniques ofmissingdata imputation; this is beyond the
scope of this book.For instance,NAs couldbe replacedby the averages of their respective columns.

We are ready now tomake use of step().
model_empty <- girls_rule_maths~1

(model_full <- formula(model.frame(girls_rule_maths~.,

data=edstats_subset)))

## girls_rule_maths ~ IT.NET.USER.P2 + LO.PISA.MAT + LO.PISA.REA +

## LO.PISA.REA.FE + LO.PISA.REA.MA + LO.PISA.SCI + LO.PISA.SCI.FE +

## LO.PISA.SCI.MA + NY.GDP.MKTP.CD + NY.GDP.PCAP.CD + SP.POP.TOTL

f <- step(glm(model_empty, data=edstats_subset, family=binomial("logit")),

scope=model_full, direction="forward")

## Start: AIC=105.12

## girls_rule_maths ~ 1

##

## Df Deviance AIC

## + LO.PISA.REA.MA 1 90.9 94.9

## + LO.PISA.SCI.MA 1 93.3 97.3

## + NY.GDP.MKTP.CD 1 94.2 98.2

## + LO.PISA.REA 1 95.0 99.0

## + LO.PISA.SCI 1 96.9 100.9

## + LO.PISA.MAT 1 97.2 101.2

## + LO.PISA.REA.FE 1 97.9 101.9

## + LO.PISA.SCI.FE 1 99.4 103.4

## <none> 103.1 105.1

## + SP.POP.TOTL 1 101.9 105.9

## + NY.GDP.PCAP.CD 1 102.3 106.3

## + IT.NET.USER.P2 1 103.1 107.1

##

## Step: AIC=94.93

## girls_rule_maths ~ LO.PISA.REA.MA

##

## Df Deviance AIC

## + LO.PISA.REA 1 42.8 48.8

## + LO.PISA.REA.FE 1 50.5 56.5

## + LO.PISA.SCI.FE 1 65.4 71.4

## + LO.PISA.SCI 1 77.9 83.9

## + LO.PISA.MAT 1 83.5 89.5
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## + NY.GDP.MKTP.CD 1 87.4 93.4

## + IT.NET.USER.P2 1 87.5 93.5

## <none> 90.9 94.9

## + NY.GDP.PCAP.CD 1 89.2 95.2

## + LO.PISA.SCI.MA 1 89.2 95.2

## + SP.POP.TOTL 1 90.2 96.2

##

## Step: AIC=48.83

## girls_rule_maths ~ LO.PISA.REA.MA + LO.PISA.REA

##

## Df Deviance AIC

## <none> 42.8 48.8

## + LO.PISA.SCI.FE 1 40.9 48.9

## + SP.POP.TOTL 1 41.2 49.2

## + NY.GDP.PCAP.CD 1 41.3 49.3

## + LO.PISA.SCI 1 42.0 50.0

## + LO.PISA.MAT 1 42.4 50.4

## + IT.NET.USER.P2 1 42.7 50.7

## + LO.PISA.SCI.MA 1 42.7 50.7

## + NY.GDP.MKTP.CD 1 42.7 50.7

## + LO.PISA.REA.FE 1 42.8 50.8

print(f)

##

## Call: glm(formula = girls_rule_maths ~ LO.PISA.REA.MA + LO.PISA.REA,

## family = binomial("logit"), data = edstats_subset)

##

## Coefficients:

## (Intercept) LO.PISA.REA.MA LO.PISA.REA

## -0.176 -0.600 0.577

##

## Degrees of Freedom: 80 Total (i.e. Null); 78 Residual

## Null Deviance: 103

## Residual Deviance: 42.8 AIC: 48.8

Y_pred <- as.numeric(predict(f, edstats_subset, type="response")>0.5)

get_metrics(Y_pred, edstats_subset$girls_rule_maths)

## Acc Prec Rec F TN FN FP TP

## 0.88889 0.84615 0.81481 0.83019 50.00000 5.00000 4.00000 22.00000

■
Exercise 4.14 Choose amodel via backward elimination.

Solution.
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Having a dataset withmissing values removed, this is easy now:
f <- suppressWarnings( # yeah, yeah, yeah...

# fitted probabilities numerically 0 or 1 occurred

step(glm(model_full, data=edstats_subset, family=binomial("logit")),

scope=model_empty, direction="backward")

)

## Start: AIC=50.83

## girls_rule_maths ~ IT.NET.USER.P2 + LO.PISA.MAT + LO.PISA.REA +

## LO.PISA.REA.FE + LO.PISA.REA.MA + LO.PISA.SCI + LO.PISA.SCI.FE +

## LO.PISA.SCI.MA + NY.GDP.MKTP.CD + NY.GDP.PCAP.CD + SP.POP.TOTL

##

## Df Deviance AIC

## - LO.PISA.MAT 1 26.8 48.8

## - LO.PISA.SCI.MA 1 26.8 48.8

## - NY.GDP.PCAP.CD 1 26.9 48.9

## - LO.PISA.SCI 1 26.9 48.9

## - LO.PISA.SCI.FE 1 27.1 49.1

## - LO.PISA.REA.FE 1 27.4 49.4

## - LO.PISA.REA 1 27.5 49.5

## - LO.PISA.REA.MA 1 27.6 49.6

## <none> 26.8 50.8

## - IT.NET.USER.P2 1 29.3 51.3

## - NY.GDP.MKTP.CD 1 29.9 51.9

## - SP.POP.TOTL 1 31.7 53.7

##

## Step: AIC=48.84

## girls_rule_maths ~ IT.NET.USER.P2 + LO.PISA.REA + LO.PISA.REA.FE +

## LO.PISA.REA.MA + LO.PISA.SCI + LO.PISA.SCI.FE + LO.PISA.SCI.MA +

## NY.GDP.MKTP.CD + NY.GDP.PCAP.CD + SP.POP.TOTL

##

## Df Deviance AIC

## - LO.PISA.SCI.MA 1 26.8 46.8

## - NY.GDP.PCAP.CD 1 26.9 46.9

## - LO.PISA.SCI 1 27.0 47.0

## - LO.PISA.SCI.FE 1 27.1 47.1

## - LO.PISA.REA.FE 1 27.4 47.4

## - LO.PISA.REA 1 27.5 47.5

## - LO.PISA.REA.MA 1 27.6 47.6

## <none> 26.8 48.8

## - IT.NET.USER.P2 1 29.3 49.3

## - NY.GDP.MKTP.CD 1 29.9 49.9

## - SP.POP.TOTL 1 31.7 51.7

##

## Step: AIC=46.84
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## girls_rule_maths ~ IT.NET.USER.P2 + LO.PISA.REA + LO.PISA.REA.FE +

## LO.PISA.REA.MA + LO.PISA.SCI + LO.PISA.SCI.FE + NY.GDP.MKTP.CD +

## NY.GDP.PCAP.CD + SP.POP.TOTL

##

## Df Deviance AIC

## - NY.GDP.PCAP.CD 1 26.9 44.9

## <none> 26.8 46.8

## - IT.NET.USER.P2 1 29.3 47.3

## - NY.GDP.MKTP.CD 1 29.9 47.9

## - LO.PISA.REA.FE 1 31.0 49.0

## - SP.POP.TOTL 1 31.8 49.8

## - LO.PISA.SCI 1 35.6 53.6

## - LO.PISA.SCI.FE 1 36.1 54.1

## - LO.PISA.REA 1 37.5 55.5

## - LO.PISA.REA.MA 1 50.9 68.9

##

## Step: AIC=44.87

## girls_rule_maths ~ IT.NET.USER.P2 + LO.PISA.REA + LO.PISA.REA.FE +

## LO.PISA.REA.MA + LO.PISA.SCI + LO.PISA.SCI.FE + NY.GDP.MKTP.CD +

## SP.POP.TOTL

##

## Df Deviance AIC

## <none> 26.9 44.9

## - NY.GDP.MKTP.CD 1 30.5 46.5

## - IT.NET.USER.P2 1 31.0 47.0

## - LO.PISA.REA.FE 1 31.1 47.1

## - SP.POP.TOTL 1 33.0 49.0

## - LO.PISA.SCI 1 35.9 51.9

## - LO.PISA.SCI.FE 1 36.4 52.4

## - LO.PISA.REA 1 37.5 53.5

## - LO.PISA.REA.MA 1 50.9 66.9

The obtainedmodel and its quality metrics:
print(f)

##

## Call: glm(formula = girls_rule_maths ~ IT.NET.USER.P2 + LO.PISA.REA +

## LO.PISA.REA.FE + LO.PISA.REA.MA + LO.PISA.SCI + LO.PISA.SCI.FE +

## NY.GDP.MKTP.CD + SP.POP.TOTL, family = binomial("logit"),

## data = edstats_subset)

##

## Coefficients:

## (Intercept) IT.NET.USER.P2 LO.PISA.REA LO.PISA.REA.FE

## -1.66e+01 1.61e-01 1.85e+00 -8.00e-01

## LO.PISA.REA.MA LO.PISA.SCI LO.PISA.SCI.FE NY.GDP.MKTP.CD
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## -1.03e+00 -1.35e+00 1.32e+00 -4.95e-12

## SP.POP.TOTL

## 6.20e-08

##

## Degrees of Freedom: 80 Total (i.e. Null); 72 Residual

## Null Deviance: 103

## Residual Deviance: 26.9 AIC: 44.9

Y_pred <- as.numeric(predict(f, edstats_subset, type="response")>0.5)

get_metrics(Y_pred, edstats_subset$girls_rule_maths)

## Acc Prec Rec F TN FN FP TP

## 0.91358 0.88462 0.85185 0.86792 51.00000 4.00000 3.00000 23.00000

Note thatwe got a better (lower) AIC than in the forward selection case,whichmeans that back-
ward elimination was better this time. On the other hand, we needed to suppress the fitted
probabilities numerically 0 or 1 occurredwarnings.The returned model is perhaps
unstable as well and consists of too many variables.

■

4.5 Outro
4.5.1 Remarks
Other prominent classification algorithms:

• Naive Bayes and other probabilistic approaches,
• Support Vector Machines (SVMs) and other kernel methods,
• (Artificial) (Deep) Neural Networks.

Interestingly, in the next chapter we will note that the logistic regression model is a
special case of a feed-forward single layer neural network.

We will also generalise the binary logistic regression to the case of a multiclass clas-
sification.

The state-of-the art classifiers called Random Forests and XGBoost (see also: AdaBoost)
are based on decision trees. They tend to be more accurate but – at the same time –
they fail to exhibit the decision trees’ important feature: interpretability.

Trees can also be used for regression tasks, see R package rpart.

4.5.2 Further Reading
Recommended further reading: (James et al. 2017: Chapters 4 and 8)
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Other: (Hastie et al. 2017: Chapters 4 and 7 as well as (*) Chapters 9, 10, 13, 15)



5
Shallow andDeepNeural Networks (*)

These lecture notes are distributed in the hope that theywill be useful.
Any bug reports are appreciated.

5.1 Introduction
5.1.1 Binary Logistic Regression: Recap
Let𝐗 ∈ ℝ𝑛×𝑝 be an input matrix that consists of 𝑛 points in a 𝑝-dimensional space.

𝐗 =
⎡
⎢
⎢
⎢
⎣

𝑥1,1 𝑥1,2 ⋯ 𝑥1,𝑝
𝑥2,1 𝑥2,2 ⋯ 𝑥2,𝑝

⋮ ⋮ ⋱ ⋮
𝑥𝑛,1 𝑥𝑛,2 ⋯ 𝑥𝑛,𝑝

⎤
⎥
⎥
⎥
⎦

In other words, we have a database on 𝑛 objects. Each object is described by means
of 𝑝 numerical features.

With each input 𝐱𝑖,⋅ we associate the desired output 𝑦𝑖 which is a categorical label –
hence we will be dealing with classification tasks again.

To recall, in binary logistic regressionwemodel the probabilities that a given input
belongs to either of the two classes:

Pr(𝑌 = 1|𝐗, 𝜷) = 𝜙(𝛽0 + 𝛽1𝑋1 + ⋯ + 𝛽𝑝𝑋𝑝)
Pr(𝑌 = 0|𝐗, 𝜷) = 1 − 𝜙(𝛽0 + 𝛽1𝑋1 + ⋯ + 𝛽𝑝𝑋𝑝)

where 𝜙(𝑡) = 1
1+𝑒−𝑡 = 𝑒𝑡

1+𝑒𝑡 is the logistic sigmoid function.

145
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It holds:

Pr(𝑌 = 1|𝐗, 𝜷) = 1
1 + 𝑒−(𝛽0+𝛽1𝑋1+⋯+𝛽𝑝𝑋𝑝) ,

Pr(𝑌 = 0|𝐗, 𝜷) = 1
1 + 𝑒+(𝛽0+𝛽1𝑋1+⋯+𝛽𝑝𝑋𝑝) = 𝑒−(𝛽0+𝛽1𝑋1+⋯+𝛽𝑝𝑋𝑝)

1 + 𝑒−(𝛽0+𝛽1𝑋1+⋯+𝛽𝑝𝑋𝑝) .

The fitting of the model was performed byminimising the cross-entropy (log-loss):

min
𝜷∈ℝ𝑝+1

− 1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 log ̂𝑦𝑖 + (1 − 𝑦𝑖) log(1 − ̂𝑦𝑖)).

where ̂𝑦𝑖 = Pr(𝑌 = 1|𝐱𝑖,⋅, 𝜷).

This is equivalent to:

min
𝜷∈ℝ𝑝+1

− 1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 log Pr(𝑌 = 1|𝐱𝑖,⋅, 𝜷) + (1 − 𝑦𝑖) log Pr(𝑌 = 0|𝐱𝑖,⋅, 𝜷)).

Note that for each 𝑖, either the left or the right term (in the bracketed expression)
vanishes.

Hence, wemay also write the above as:

min
𝜷∈ℝ𝑝+1

− 1
𝑛

𝑛
∑
𝑖=1

log Pr(𝑌 = 𝑦𝑖|𝐱𝑖,⋅, 𝜷).

In this chapter we will generalise the binary logistic regressionmodel:

• First we will consider the case of many classes (multiclass classification). This will
lead to the multinomial logistic regressionmodel.

• Thenwewill note that themultinomial logistic regression is a special case of a feed-
forward neural network.

5.1.2 Data
Wewill study the famous classic – theMNIST image classification dataset (Modified
National Institute of Standards and Technology database), see http://yann.lecun.c
om/exdb/mnist/

It consists of 28×28 pixel images of handwritten digits:

• train: 60,000 training images,
• t10k: 10,000 testing images.

A few image instances from each class are depicted in Figure 5.1.

## Loaded Tensorflow version 2.9.1

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
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Figure 5.1: Example images in the MNIST database

There are 10 unique digits, so this is a multiclass classification problem.

Remark. Thedataset is already “too easy” for testing of the state-of-the-art classifi-
ers (see the notes below), but it’s a great educational example.

Accessing MNIST via the keras package (which we will use throughout this chapter
anyway) is easy:
library("keras")

mnist <- dataset_mnist()

X_train <- mnist$train$x

Y_train <- mnist$train$y

X_test <- mnist$test$x

Y_test <- mnist$test$y

X_train and X_test consist of 28×28 pixel images.
dim(X_train)

## [1] 60000 28 28

dim(X_test)

## [1] 10000 28 28

X_train and X_test are 3-dimensional arrays, think of them as vectors of 60000 and
10000matrices of size 28×28, respectively.

These are grey-scale images, with 0 = black, …, 255 = white:
range(X_train)

## [1] 0 255
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Numerically, it’smore convenient toworkwith colour values converted to0.0=black,
…, 1.0 = white:
X_train <- X_train/255

X_test <- X_test/255

Y_train and Y_test are the corresponding integer labels:
length(Y_train)

## [1] 60000

length(Y_test)

## [1] 10000

table(Y_train) # label distribution in the training sample

## Y_train

## 0 1 2 3 4 5 6 7 8 9

## 5923 6742 5958 6131 5842 5421 5918 6265 5851 5949

table(Y_test) # label distribution in the test sample

## Y_test

## 0 1 2 3 4 5 6 7 8 9

## 980 1135 1032 1010 982 892 958 1028 974 1009

Here is how we can plot one of the digits (see Figure 5.2):
id <- 123 # image ID to show

image(z=t(X_train[id,,]), col=grey.colors(256, 0, 1),

axes=FALSE, asp=1, ylim=c(1, 0))

legend("topleft", bg="white",

legend=sprintf("True label=%d", Y_train[id]))

5.2 Multinomial Logistic Regression
5.2.1 ANote onData Representation
So…youmaynowbewondering “howdowe construct an image classifier, this seems
so complicated!”.

For a computer, (almost) everything is just numbers.

Instead of playing with 𝑛matrices, each of size 28×28, we may “flatten” the images
so as to get 𝑛 “long” vectors of length 𝑝 = 784.
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True label=2

Figure 5.2: Example image from theMNIST dataset

X_train2 <- matrix(X_train, ncol=28*28)

X_test2 <- matrix(X_test, ncol=28*28)

The classifiers studied here do not take the “spatial” positioning of the pixels into
account anyway. Hence, now we’re back to our “comfort zone”.

Remark. (*) See, however, convolutional neural networks (CNNs), e.g., in (Goodfel-
low et al. 2016).

5.2.2 Extending Logistic Regression
Let us generalise the binary logistic regressionmodel to a 10-class one (or,more gen-
erally, 𝐾-class one).

This time we will be modelling ten probabilities, with Pr(𝑌 = 𝑘|𝐗,𝐁) denoting the
confidence that a given image𝐗 is in fact the 𝑘-th digit:

Pr(𝑌 = 0|𝐗,𝐁) = …
Pr(𝑌 = 1|𝐗,𝐁) = …

⋮
Pr(𝑌 = 9|𝐗,𝐁) = …

where 𝐁 is the set of underlying model parameters (to be determined soon).
In binary logistic regression, the class probabilities are obtained by “cleverly norm-
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alising” (by means of the logistic sigmoid) the outputs of a linear model (so that we
obtain a value in [0, 1]).

Pr(𝑌 = 1|𝐗, 𝜷) = 𝜙(𝛽0 + 𝛽1𝑋1 + ⋯ + 𝛽𝑝𝑋𝑝) = 1
1 + 𝑒−(𝛽0+𝛽1𝑋1+⋯+𝛽𝑝𝑋𝑝)

In the multinomial case, we can use a separate linear model for each digit so that
each Pr(𝑌 = 𝑘|𝐗,𝐁), 𝑘 = 0, 1, … , 9, is given as a function of:

𝛽0,𝑘 + 𝛽1,𝑘𝑋1 + ⋯ + 𝛽𝑝,𝑘𝑋𝑝.

Therefore, instead of a parameter vector of length (𝑝 + 1), we will need a parameter
matrix of size (𝑝 + 1) × 10 representing the model’s definition.

Side note. The upper case of 𝛽 is 𝐵.

Then, these 10 numbers will have to be normalised so as to they are all greater than
0 and sum to 1.

To maintain the spirit of the original model, we can apply 𝑒−(𝛽0,𝑘+𝛽1,𝑘𝑋1+⋯+𝛽𝑝,𝑘𝑋𝑝)

to get a positive value, because the co-domain of the exponential function 𝑡 ↦ 𝑒𝑡 is
(0, ∞).

Then, dividing each output by the sumof all the outputs will guarantee that the total
sum equals 1.

This leads to:

Pr(𝑌 = 0|𝐗,𝐁) = 𝑒−(𝛽0,0+𝛽1,0𝑋1+⋯+𝛽𝑝,0𝑋𝑝)

∑9
𝑘=0 𝑒−(𝛽0,𝑘+𝛽1,𝑘𝑋1+⋯+𝛽𝑝,𝑘𝑋𝑝) ,

Pr(𝑌 = 1|𝐗,𝐁) = 𝑒−(𝛽0,1+𝛽1,1𝑋1+⋯+𝛽𝑝,1𝑋𝑝)

∑9
𝑘=0 𝑒−(𝛽0,𝑘+𝛽1,𝑘𝑋1+⋯+𝛽𝑝,𝑘𝑋𝑝) ,

⋮

Pr(𝑌 = 9|𝐗,𝐁) = 𝑒−(𝛽0,9+𝛽1,9𝑋1+⋯+𝛽𝑝,9𝑋𝑝)

∑9
𝑘=0 𝑒−(𝛽0,𝑘+𝛽1,𝑘𝑋1+⋯+𝛽𝑝,𝑘𝑋𝑝) .

This reduces to the binary logistic regression if we consider only the classes 0 and 1
and fix 𝛽0,0 = 𝛽1,0 = ⋯ = 𝛽𝑝,0 = 0 (as 𝑒0 = 1).

5.2.3 Softmax Function
The above transformation (thatmaps 10 arbitrary real numbers to positive ones that
sum to 1) is called the softmax function (or softargmax).
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softmax <- function(T) {

T2 <- exp(T) # ignore the minus sign above

T2/sum(T2)

}

round(rbind(

softmax(c(0, 0, 10, 0, 0, 0, 0, 0, 0, 0)),

softmax(c(0, 0, 10, 0, 0, 0, 10, 0, 0, 0)),

softmax(c(0, 0, 10, 0, 0, 0, 9, 0, 0, 0)),

softmax(c(0, 0, 10, 0, 0, 0, 9, 0, 0, 8))), 2)

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

## [1,] 0 0 1.00 0 0 0 0.00 0 0 0.00

## [2,] 0 0 0.50 0 0 0 0.50 0 0 0.00

## [3,] 0 0 0.73 0 0 0 0.27 0 0 0.00

## [4,] 0 0 0.67 0 0 0 0.24 0 0 0.09

5.2.4 One-Hot Encoding andDecoding
The ten class-belongingness-degrees can be decoded to obtain a single label by
simply choosing the class that is assigned the highest probability.
y_pred <- softmax(c(0, 0, 10, 0, 0, 0, 9, 0, 0, 8))

round(y_pred, 2) # probabilities of Y=0, 1, 2, ..., 9

## [1] 0.00 0.00 0.67 0.00 0.00 0.00 0.24 0.00 0.00 0.09

which.max(y_pred)-1 # 1..10 -> 0..9

## [1] 2

Remark. which.max(y) returns an index k such that y[k]==max(y) (recall that in R
thefirst element in a vector is at index 1).Mathematically,wedenote this operation
as argmax𝑘=1,…,𝐾 𝑦𝑘.

To make processing the outputs of a logistic regression model more convenient, we
will apply the so-called one-hot-encoding of the labels.

Here, each label will be represented as a 0-1 vector of 10 probabilities – with probab-
ility 1 corresponding to the true class only.

For instance:
y <- 2 # true class (this is just an example)

y2 <- rep(0, 10)

y2[y+1] <- 1 # +1 because we need 0..9 -> 1..10

y2 # one-hot-encoded y

## [1] 0 0 1 0 0 0 0 0 0 0
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To one-hot encode all the reference outputs in R, we start with amatrix of size 𝑛×10
populated with “0”s:
Y_train2 <- matrix(0, nrow=length(Y_train), ncol=10)

Next, for every 𝑖, we insert a “1” in the 𝑖-th row and the (Y_train[𝑖]+1)-th column:
# Note the "+1" 0..9 -> 1..10

Y_train2[cbind(1:length(Y_train), Y_train+1)] <- 1

Remark. In R, indexing a matrix A with a 2-column matrix B, i.e., A[B], allows for
an easy access to A[B[1,1], B[1,2]], A[B[2,1], B[2,2]], A[B[3,1], B[3,2]], …

Sanity check:
head(Y_train)

## [1] 5 0 4 1 9 2

head(Y_train2)

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

## [1,] 0 0 0 0 0 1 0 0 0 0

## [2,] 1 0 0 0 0 0 0 0 0 0

## [3,] 0 0 0 0 1 0 0 0 0 0

## [4,] 0 1 0 0 0 0 0 0 0 0

## [5,] 0 0 0 0 0 0 0 0 0 1

## [6,] 0 0 1 0 0 0 0 0 0 0

Let us generalise the above idea and write a function that can one-hot-encode any
vector of integer labels:
one_hot_encode <- function(Y) {

stopifnot(is.numeric(Y))

c1 <- min(Y) # first class label

cK <- max(Y) # last class label

K <- cK-c1+1 # number of classes

Y2 <- matrix(0, nrow=length(Y), ncol=K)

Y2[cbind(1:length(Y), Y-c1+1)] <- 1

Y2

}

Encode Y_train and Y_test:
Y_train2 <- one_hot_encode(Y_train)

Y_test2 <- one_hot_encode(Y_test)



Shallow andDeepNeural Networks (*) 153

5.2.5 Cross-entropy Revisited
Our classifier will be outputting 𝐾 = 10 probabilities.

The true class labels are not one-hot-encoded so that they are represented as vectors
of 𝐾 − 1 zeros and a single one.

How to measure the “agreement” between these two?

In essence, we will be comparing the probability vectors as generated by a classifier,
�̂�:
round(y_pred, 2)

## [1] 0.00 0.00 0.67 0.00 0.00 0.00 0.24 0.00 0.00 0.09

with the one-hot-encoded true probabilities, 𝑌:
y2

## [1] 0 0 1 0 0 0 0 0 0 0

It turns out that one of the definitions of cross-entropy introduced above already
handles the case of multiclass classification:

𝐸(𝐁) = − 1
𝑛

𝑛
∑
𝑖=1

log Pr(𝑌 = 𝑦𝑖|𝐱𝑖,⋅,𝐁).

Thesmaller theprobability corresponding to theground-truth class outputtedby the
classifier, the higher the penalty, see Figure 5.3.

To sum up, we will be solving the optimisation problem:

min
𝐁∈ℝ(𝑝+1)×10

− 1
𝑛

𝑛
∑
𝑖=1

log Pr(𝑌 = 𝑦𝑖|𝐱𝑖,⋅,𝐁).

This has no analytical solution, but can be solved using iterative methods (see the
chapter on optimisation).

(*) Side note: A single term in the above formula,

log Pr(𝑌 = 𝑦𝑖|𝐱𝑖,⋅,𝐁)

given:

• y_pred – a vector of 10 probabilities generated by the model:

[Pr(𝑌 = 0|𝐱𝑖,⋅,𝐁) Pr(𝑌 = 1|𝐱𝑖,⋅,𝐁) ⋯ Pr(𝑌 = 9|𝐱𝑖,⋅,𝐁)]

• y2 – a one-hot-encoded version of the true label, 𝑦𝑖, of the form:

[0 0 ⋯ 0 1 0 ⋯ 0]
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Figure 5.3: The less the classifier is confident about the prediction of the actually true
label, the greater the penalty

can be computed as:
sum(y2*log(y_pred))

## [1] -0.40782

5.2.6 ProblemFormulation inMatrix Form (**)
The definition of a multinomial logistic regression model for a multiclass classifica-
tion task involving classes {1, 2, … , 𝐾} is slightly bloated.

Assuming that𝐗 ∈ ℝ𝑛×𝑝 is the input matrix, to compute the 𝐾 predicted probabil-
ities for the 𝑖-th input,

[ ̂𝑦𝑖,1 ̂𝑦𝑖,2 ⋯ ̂𝑦𝑖,𝐾] ,

given a parameter matrix 𝐁(𝑝+1)×𝐾, we apply:

̂𝑦𝑖,1 = Pr(𝑌 = 1|𝐱𝑖,⋅,𝐁) = 𝑒𝛽0,1+𝛽1,1𝑥𝑖,1+⋯+𝛽𝑝,1𝑥𝑖,𝑝

∑𝐾
𝑘=1 𝑒𝛽0,𝑘+𝛽1,𝑘𝑥𝑖,1+⋯+𝛽𝑝,𝑘𝑥𝑖,𝑝

,

⋮

̂𝑦𝑖,𝐾 = Pr(𝑌 = 𝐾|𝐱𝑖,⋅,𝐁) = 𝑒𝛽0,𝐾+𝛽1,𝐾𝑥𝑖,1+⋯+𝛽𝑝,𝐾𝑥𝑖,𝑝

∑𝐾
𝑘=1 𝑒𝛽0,𝑘+𝛽1,𝑘𝑥𝑖,1+⋯+𝛽𝑝,𝑘𝑥𝑖,𝑝

.

Remark. Wehave dropped theminus sign in the exponentiation for brevity of nota-
tion. Note that we can always map 𝑏′

𝑗,𝑘 = −𝑏𝑗,𝑘.
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It turns out we canmake use of matrix notation to tidy the above formulas.

Denote the linear combinations prior to computing the softmax function with:

𝑡𝑖,1 = 𝛽0,1 + 𝛽1,1𝑥𝑖,1 + ⋯ + 𝛽𝑝,1𝑥𝑖,𝑝,
⋮

𝑡𝑖,𝐾 = 𝛽0,𝐾 + 𝛽1,𝐾𝑥𝑖,1 + ⋯ + 𝛽𝑝,𝐾𝑥𝑖,𝑝.

We have:

• 𝑥𝑖,𝑗 – the 𝑖-th observation, the 𝑗-th feature;
• ̂𝑦𝑖,𝑘 – the 𝑖-th observation, the 𝑘-th class probability;
• 𝛽𝑗,𝑘 – the coefficient for the 𝑗-th feature when computing the 𝑘-th class.

Note that by augmenting �̇� = [1𝐗] ∈ ℝ𝑛×(𝑝+1) byaddinga columnof 1s, i.e.,where
̇𝑥𝑖,0 = 1 and ̇𝑥𝑖,𝑗 = 𝑥𝑖,𝑗 for all 𝑗 ≥ 1 and all 𝑖, we can write the above as:

𝑡𝑖,1 = ∑𝑝
𝑗=0 ̇𝑥𝑖,𝑗 𝛽𝑗,1 = ̇𝐱𝑖,⋅ 𝜷⋅,1,

⋮
𝑡𝑖,𝐾 = ∑𝑝

𝑗=0 ̇𝑥𝑖,𝑗 𝛽𝑗,𝐾 = ̇𝐱𝑖,⋅ 𝜷⋅,𝐾 .

We can get the 𝐾 linear combinations all at once in the form of a row vector by writ-
ing:

[𝑡𝑖,1 𝑡𝑖,2 ⋯ 𝑡𝑖,𝐾] = 𝐱𝑖,⋅ 𝐁.

Moreover, we can do that for all the 𝑛 inputs by writing:

𝐓 = �̇� 𝐁.

Yes yes yes!This is a single matrix multiplication, we have 𝐓 ∈ ℝ𝑛×𝐾.

To obtain �̂�, we have to apply the softmax function on every row of 𝐓:

�̂� = softmax (�̇� 𝐁) .

That’s it. Take some time to appreciate the elegance of this notation.

Methods for minimising cross-entropy expressed in matrix form will be discussed
in the next chapter.

5.3 Artificial Neural Networks
5.3.1 Artificial Neuron
A neuron can be thought of as amathematical function, see Figure 5.4, which has its
specific inputs and an output.
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axon (output)

dendrites (inputs)

magic stuff happening

Figure 5.4: Neuron as a mathematical (black box) function; image based on: https:
//en.wikipedia.org/wiki/File:Neuron3.png by Egm4313.s12 at English Wikipedia,
licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license

https://en.wikipedia.org/wiki/File:Neuron3.png
https://en.wikipedia.org/wiki/File:Neuron3.png
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The LinearThreshold Unit (McCulloch and Pitts, 1940s), the Perceptron (Rosenblatt,
1958) and the Adaptive Linear Neuron (Widrow and Hoff, 1960) were amongst the
first models of an artificial neuron that could be used for the purpose of pattern re-
cognition, see Figure 5.5. They can be thought of as processing units that compute
a weighted sum of the inputs, which is then transformed by means of a nonlinear
“activation” function.

inputs

output

activation
function

weighted
sum

weights

Figure 5.5: A simple model of an artificial neuron

5.3.2 Logistic Regression as aNeural Network
The above resembles our binary logistic regression model, where we determine a
linear combination (a weighted sum) of 𝑝 inputs and then transform it using the
logistic sigmoid “activation” function. We can easily depict it in the Figure 5.4-style,
see Figure 5.6.
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inputs
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logistic
sigmoid

output

Figure 5.6: Binary logistic regression

On the other hand, a multiclass logistic regression can be depicted as in Figure 5.7.
In fact, we can consider it as an instance of a:

• single layer (there is only one processing step that consists of 10 units),
• densely connected (all the inputs are connected to all the components below),
• feed-forward (the outputs are generated by processing the inputs from “top” to
“bottom”, there are no loops in the graph etc.)

artificial neural network that uses the softmax as the activation function.

5.3.3 Example in R
To train such a neural network (i.e., fit a multinomial logistic regressionmodel), we
will use the keras package, a wrapper around the (GPU-enabled) TensorFlow library.

The training of themodel takes a fewminutes (for more complexmodels and bigger
datasets – it could take hours/days). Thus, it is wise to store the computed model
(the 𝐁 coefficient matrix and the accompanying keras’s auxiliary data) for further
reference:
file_name <- "datasets/mnist_keras_model1.h5"

if (!file.exists(file_name)) { # File doesn't exist -> compute

set.seed(123)

# Start with an empty model

model1 <- keras_model_sequential()

# Add a single layer with 10 units and softmax activation

layer_dense(model1, units=10, activation="softmax")
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softmax

Figure 5.7: Multinomial logistic regression

# We will be minimising the cross-entropy,

# sgd == stochastic gradient descent, see the next chapter

compile(model1, optimizer="sgd",

loss="categorical_crossentropy")

# Fit the model (slooooow!)

fit(model1, X_train2, Y_train2, epochs=10)

# Save the model for future reference

save_model_hdf5(model1, file_name)

} else { # File exists -> reload the model

model1 <- load_model_hdf5(file_name)

}

Let’s make predictions over the test set:
Y_pred2 <- predict(model1, X_test2)

round(head(Y_pred2), 2) # predicted class probabilities

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

## [1,] 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

## [2,] 0.01 0.00 0.93 0.01 0.00 0.01 0.04 0.00 0.00 0.00

## [3,] 0.00 0.96 0.02 0.00 0.00 0.00 0.00 0.00 0.01 0.00

## [4,] 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

## [5,] 0.00 0.00 0.01 0.00 0.91 0.00 0.01 0.01 0.01 0.05

## [6,] 0.00 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00

Then, we can one-hot-decode the output probabilities:
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Y_pred <- apply(Y_pred2, 1, which.max)-1 # 1..10 -> 0..9

head(Y_pred, 20) # predicted outputs

## [1] 7 2 1 0 4 1 4 9 6 9 0 6 9 0 1 5 9 7 3 4

head(Y_test, 20) # true outputs

## [1] 7 2 1 0 4 1 4 9 5 9 0 6 9 0 1 5 9 7 3 4

Accuracy on the test set:
mean(Y_test == Y_pred)

## [1] 0.9169

Performance metrics for each digit separately (see also Figure 5.8):

i Acc Prec Rec F TN FN FP TP

0 0.9924 0.94664 0.97755 0.96185 8966 22 54 958
1 0.9923 0.95920 0.97357 0.96633 8818 30 47 1105
2 0.9803 0.92214 0.88372 0.90252 8891 120 77 912
3 0.9802 0.89417 0.91188 0.90294 8881 89 109 921
4 0.9833 0.90148 0.93177 0.91637 8918 67 100 915
5 0.9793 0.91415 0.84753 0.87958 9037 136 71 756
6 0.9885 0.93142 0.94990 0.94057 8975 48 67 910
7 0.9834 0.92843 0.90856 0.91839 8900 94 72 934
8 0.9754 0.86473 0.88604 0.87525 8891 111 135 863
9 0.9787 0.90040 0.88702 0.89366 8892 114 99 895

Note howmisleading the individual accuracies are! Averaging over the above table’s
columns gives:

## Acc Prec Rec F

## 0.98338 0.91628 0.91575 0.91575

5.4 DeepNeural Networks
5.4.1 Introduction
In a brain, a neuron’s output is an input a bunch of other neurons.We could try align-
ing neurons into many interconnected layers. This leads to a structure like the one
in Figure 5.9.
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Figure 5.8: Performance metrics for multinomial logistic regression onMNIST

5.4.2 Activation Functions
Each layer’s outputs should be transformed by some non-linear activation function.
Otherwise, we’d end up with linear combinations of linear combinations, which are
linear combinations themselves.

Example activation functions that can be used in hidden (inner) layers:

• relu –The rectified linear unit:

𝜓(𝑡) = max(𝑡, 0),

• sigmoid –The logistic sigmoid:

𝜙(𝑡) = 1
1 + exp(−𝑡) ,

• tanh –The hyperbolic function:

tanh(𝑡) = exp(𝑡) − exp(−𝑡)
exp(𝑡) + exp(−𝑡) .

There is not much difference between them, but somemight be more convenient to
handle numerically than the others, depending on the implementation.

5.4.3 Example in R - 2 Layers
Let’s construct a 2-layer Neural Network of the type 784-800-10:
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softmax

layer 1

layer L-1

layer L

... ... ... .........

Figure 5.9: A multi-layer neural network

file_name <- "datasets/mnist_keras_model2.h5"

if (!file.exists(file_name)) {

set.seed(123)

model2 <- keras_model_sequential()

layer_dense(model2, units=800, activation="relu")

layer_dense(model2, units=10, activation="softmax")

compile(model2, optimizer="sgd",

loss="categorical_crossentropy")

fit(model2, X_train2, Y_train2, epochs=10)

save_model_hdf5(model2, file_name)

} else {

model2 <- load_model_hdf5(file_name)

}
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Y_pred2 <- predict(model2, X_test2)

Y_pred <- apply(Y_pred2, 1, which.max)-1 # 1..10 -> 0..9

mean(Y_test == Y_pred) # accuracy on the test set

## [1] 0.9583

Performance metrics for each digit separately, see also Figure 5.10:

i Acc Prec Rec F TN FN FP TP

0 0.9948 0.96215 0.98571 0.97379 8982 14 38 966
1 0.9962 0.98156 0.98502 0.98329 8844 17 21 1118
2 0.9911 0.96000 0.95349 0.95673 8927 48 41 984
3 0.9898 0.94773 0.95149 0.94960 8937 49 53 961
4 0.9919 0.95829 0.95927 0.95878 8977 40 41 942
5 0.9911 0.95470 0.94507 0.94986 9068 49 40 843
6 0.9920 0.94888 0.96868 0.95868 8992 30 50 928
7 0.9906 0.95517 0.95331 0.95424 8926 48 46 980
8 0.9899 0.95421 0.94148 0.94780 8982 57 44 917
9 0.9892 0.95643 0.93558 0.94589 8948 65 43 944
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Figure 5.10: Performance metrics for a 2-layer net 784-800-10 [relu] onMNIST

5.4.4 Example in R - 6 Layers
How about a 6-layer Deep Neural Network like 784-2500-2000-1500-1000-500-10?
Here you are:
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file_name <- "datasets/mnist_keras_model3.h5"

if (!file.exists(file_name)) {

set.seed(123)

model3 <- keras_model_sequential()

layer_dense(model3, units=2500, activation="relu")

layer_dense(model3, units=2000, activation="relu")

layer_dense(model3, units=1500, activation="relu")

layer_dense(model3, units=1000, activation="relu")

layer_dense(model3, units=500, activation="relu")

layer_dense(model3, units=10, activation="softmax")

compile(model3, optimizer="sgd",

loss="categorical_crossentropy")

fit(model3, X_train2, Y_train2, epochs=10)

save_model_hdf5(model3, file_name)

} else {

model3 <- load_model_hdf5(file_name)

}

Y_pred2 <- predict(model3, X_test2)

Y_pred <- apply(Y_pred2, 1, which.max)-1 # 1..10 -> 0..9

mean(Y_test == Y_pred) # accuracy on the test set

## [1] 0.9769

Performance metrics for each digit separately, see also Figure 5.11.

i Acc Prec Rec F TN FN FP TP

0 0.9964 0.97295 0.99082 0.98180 8993 9 27 971
1 0.9980 0.99206 0.99031 0.99118 8856 11 9 1124
2 0.9948 0.99000 0.95930 0.97441 8958 42 10 990
3 0.9948 0.97239 0.97624 0.97431 8962 24 28 986
4 0.9951 0.97846 0.97149 0.97496 8997 28 21 954
5 0.9963 0.97553 0.98318 0.97934 9086 15 22 877
6 0.9965 0.98224 0.98121 0.98172 9025 18 17 940
7 0.9941 0.95837 0.98541 0.97170 8928 15 44 1013
8 0.9939 0.96534 0.97228 0.96880 8992 27 34 947
9 0.9939 0.98073 0.95837 0.96942 8972 42 19 967

Exercise 5.1 Test the performance of different neural network architectures (different number
of layers, different number of neurons in each layer etc.). Yes, it’s more art than science! Many
tried to come up with various “rules of thumb”, see, for example, the comp.ai.neural-nets
FAQ (Sarle et al. 2002) at http://www.faqs.org/faqs/ai-faq/neural-nets/part3/preamble.ht
ml, but what works well in one problemmight not be generalisable to another one.

http://www.faqs.org/faqs/ai-faq/neural-nets/part3/preamble.html
http://www.faqs.org/faqs/ai-faq/neural-nets/part3/preamble.html
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Figure 5.11: Performancemetrics for a 6-layer net 784-2500-2000-1500-1000-500-10
[relu] onMNIST

5.5 Preprocessing of Data
5.5.1 Introduction
Do not underestimate the power of appropriate data preprocessing — deep neural
networks are not a universal replacement for a data engineer’s hard work!

On top of that, they are not interpretable – these are merely black-boxes.

Among the typical transformations of the input images we can find:

• normalisation of colours (setting brightness, stretching contrast, etc.),
• repositioning of the image (centring),
• deskewing (see below),
• denoising (e.g., by blurring).

Another frequently applied technique concerns an expansion of the training data—
we can add “artificially contaminated” images to the training set (e.g., slightly ro-
tated digits) so as to be more ready to whatever will be provided in the test test.

5.5.2 ImageDeskewing
Deskewing of images (“straightening” of the digits) is amongst the most typical
transformations that can be applied onMNIST.
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Unfortunately, we don’t have (yet) the necessary mathematical background to dis-
cuss this operation in very detail.

Luckily, we can apply it on each image anyway.

See the GitHub repository at https://github.com/gagolews/Playground.R for an
example notebook and the deskew.R script.
# See https://github.com/gagolews/Playground.R

source("~/R/Playground.R/deskew.R")

# new_image <- deskew(old_image)

Figure 5.12: Deskewing of the MNIST digits

Let’s take a look at Figure 5.12. In each pair, the left image (black background) is the
original one, and the right image (palette inverted for purely dramatic effects) is its
deskewed version.

Below we deskew each image in the training as well as in the test sample. This also
takes a long time, so let’s store the resulting objects for further reference:
file_name <- "datasets/mnist_deskewed_train.rds"

if (!file.exists(file_name)) {

Z_train <- X_train

for (i in 1:dim(Z_train)[1]) {

Z_train[i,,] <- deskew(Z_train[i,,])

}

Z_train2 <- matrix(Z_train, ncol=28*28)

saveRDS(Z_train2, file_name)

} else {

Z_train2 <- readRDS(file_name)

}

https://github.com/gagolews/Playground.R
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file_name <- "datasets/mnist_deskewed_test.rds"

if (!file.exists(file_name)) {

Z_test <- X_test

for (i in 1:dim(Z_test)[1]) {

Z_test[i,,] <- deskew(Z_test[i,,])

}

Z_test2 <- matrix(Z_test, ncol=28*28)

saveRDS(Z_test2, file_name)

} else {

Z_test2 <- readRDS(file_name)

}

Remark. RDS in a compressed file format used by R for object serialisation (quickly
storing its verbatim copies so that they can be reloaded at any time).

Multinomial logistic regressionmodel (1-layer NN):
file_name <- "datasets/mnist_keras_model1d.h5"

if (!file.exists(file_name)) {

set.seed(123)

model1d <- keras_model_sequential()

layer_dense(model1d, units=10, activation="softmax")

compile(model1d, optimizer="sgd",

loss="categorical_crossentropy")

fit(model1d, Z_train2, Y_train2, epochs=10)

save_model_hdf5(model1d, file_name)

} else {

model1d <- load_model_hdf5(file_name)

}

Y_pred2 <- predict(model1d, Z_test2)

Y_pred <- apply(Y_pred2, 1, which.max)-1 # 1..10 -> 0..9

mean(Y_test == Y_pred) # accuracy on the test set

## [1] 0.9488

Performance metrics for each digit separately, see also Figure 5.13.

i Acc Prec Rec F TN FN FP TP

0 0.9939 0.95450 0.98469 0.96936 8974 15 46 965
1 0.9959 0.98236 0.98150 0.98193 8845 21 20 1114
2 0.9878 0.95409 0.92636 0.94002 8922 76 46 956
3 0.9904 0.95069 0.95446 0.95257 8940 46 50 964
4 0.9888 0.94118 0.94501 0.94309 8960 54 58 928
5 0.9905 0.94426 0.94955 0.94690 9058 45 50 847
6 0.9905 0.95565 0.94468 0.95013 9000 53 42 905
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i Acc Prec Rec F TN FN FP TP

7 0.9892 0.96000 0.93385 0.94675 8932 68 40 960
8 0.9855 0.91162 0.94251 0.92680 8937 56 89 918
9 0.9851 0.92914 0.92270 0.92591 8920 78 71 931
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Figure 5.13: Performance of Multinomial Logistic Regression on the deskewed
MNIST

5.5.3 Summary of All theModels Considered
Let’s summarise the quality of all the considered classifiers. Figure 5.14 gives the F-
measures, for each digit separately.

Note that the applied preprocessing of data increased the prediction accuracy.

The same information can also be includedon aheatmapwhich is depicted in Figure
5.15 (see the image() function in R).

5.6 Outro
5.6.1 Remarks
Wehave discussed amultinomial logistic regressionmodel as a generalisation of the
binary one.
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This in turn is a special case of feed-forward neural networks.

There’s a lot of hype (again…) for deep neural networks inmany applications, includ-
ing vision, self-driving cars, natural language processing, speech recognition etc.

Many different architectures of neural networks and types of units are being con-
sidered in theory and in practice, e.g.:

• convolutional neural networks apply a series of signal (e.g., image) transforma-
tions in first layers, they might actually “discover” deskewing automatically etc.;

• recurrent neural networks can imitate long/short-term memory that can be used
for speech synthesis and time series prediction.

Main drawbacks of deep neural networks:

• learning is very slow, especially with very deep architectures (days, weeks);
• models are not explainable (black boxes) and hard to debug;
• finding good architectures is more art than science (maybe: more of a craftsman-
ship even);

• sometimes using deep neural network is just an excuse for being too lazy to do
proper data cleansing and pre-processing.

There are many issues and challenges that are tackled in more advanced AI/ML
courses and books, such as (Goodfellow et al. 2016).

5.6.2 BeyondMNIST
The MNIST dataset is a classic, although its use in deep learning research is
nowadays discouraged – the dataset is not considered challenging anymore – state
of the art classifiers can reach 99.8% accuracy.

See Zalando’s Fashion-MNIST (by Kashif Rasul & Han Xiao) at https://github.com
/zalandoresearch/fashion-mnist for a modern replacement.

Alternatively, take a look at CIFAR-10 andCIFAR-100 (https://www.cs.toronto.edu/~
kriz/cifar.html) by A. Krizhevsky et al. or at ImageNet (http://image-net.org/index)
for an even greater challenge.

5.6.3 Further Reading
Recommended further reading: (James et al. 2017: Chapter 11), (Sarle et al. 2002) and
(Goodfellow et al. 2016)

See also the keras package tutorials available at: https://cran.r-project.org/web/pa
ckages/keras/index.html and https://keras.rstudio.com.

https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
http://image-net.org/index
https://cran.r-project.org/web/packages/keras/index.html
https://cran.r-project.org/web/packages/keras/index.html
https://keras.rstudio.com


6
Continuous Optimisation with Iterative Algorithms
(*)

These lecture notes are distributed in the hope that theywill be useful.
Any bug reports are appreciated.

6.1 Introduction
6.1.1 Optimisation Problems
Mathematical optimisation (a.k.a. mathematical programming) deals with the
study of algorithms to solve problems related to selecting the best element amongst
the set of available alternatives.

Most frequently “best” is expressed in terms of an error or goodness of fitmeasure:

𝑓 ∶ 𝔻 → ℝ

called an objective function, where𝔻 is the search space (problemdomain, feasible
set).

An optimisation task deals with finding an element 𝐱 ∈ 𝔻 amongst the set of pos-
sible candidate solutions, that minimises or maximises 𝑓 :

min
𝐱∈𝔻

𝑓 (𝐱) or max
𝐱∈𝔻

𝑓 (𝐱),

In this chapter we will deal with unconstrained continuous optimisation, i.e., we
will assume the search space is𝔻 = ℝ𝑝 for some 𝑝 – we’ll be optimising over 𝑝 real-
valued parameters.
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6.1.2 Example Optimisation Problems inMachine Learning
Inmultiple linear regressionwe were minimising the sum of squared residuals

min
𝜷∈ℝ𝑝

𝑛
∑
𝑖=1

(𝛽0 + 𝛽1𝑥𝑖,1 + ⋯ + 𝛽𝑝𝑥𝑖,𝑝 − 𝑦𝑖)
2

.

In binary logistic regressionwe were minimising the cross-entropy:

min
𝜷∈ℝ𝑝 − 1

𝑛
𝑛

∑
𝑖=1

⎛⎜⎜⎜⎜
⎝

𝑦𝑖 log( 1
1+𝑒−(𝛽0+𝛽1𝑥𝑖,1+⋯+𝛽𝑝𝑥𝑖,𝑝

)

+(1 − 𝑦𝑖) log( 𝑒−(𝛽0+𝛽1𝑥𝑖,1+⋯+𝛽𝑝𝑥𝑖,𝑝

1+𝑒−(𝛽0+𝛽1𝑥𝑖,1+⋯+𝛽𝑝𝑥𝑖,𝑝) )

⎞⎟⎟⎟⎟
⎠

.

6.1.3 Types ofMinima andMaxima
Note that minimising 𝑓 is the same as maximising ̄𝑓 = −𝑓 .

In other words, min𝐱∈𝔻 𝑓 (𝐱) and max𝐱∈𝔻 −𝑓 (𝐱) represent the same optimisation
problems (and hence have identical solutions).

Definition. Aminimum of 𝑓 is a point 𝐱∗ such that 𝑓 (𝐱∗) ≤ 𝑓 (𝐱) for all 𝐱 ∈ 𝔻. On
the other hand, amaximum of 𝑓 is a point 𝐱∗ such that 𝑓 (𝐱∗) ≥ 𝑓 (𝐱) for all 𝐱 ∈ 𝔻.

Assuming that𝔻 = ℝ, Figure 6.1 shows an example objective function, 𝑓 ∶ 𝔻 → ℝ,
that has a minimum at 𝑥∗ = 1with 𝑓 (𝑥∗) = −2.

-2 -1 0 1 2 3 4 5

-4
-2

0
2

4
6

8

x

f(x
)

x*

f(x*)

f(x)=(x − 1)2 − 2

Figure 6.1: A function with the global minimum at 𝑥∗ = 1

Remark. We can denote these two facts as follows:
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• (min𝑥∈ℝ 𝑓 (𝑥)) = −2 (value of 𝑓 at the minimum is−2),
• (argmin𝑥∈ℝ 𝑓 (𝑥)) = 1 (location of the minimum, i.e., argument minimum, is

1).

By definition, aminimum/maximummight not necessarily be unique.This depends on
a problem.

Assuming that𝔻 = ℝ, Figure 6.2 gives an example objective function, 𝑓 ∶ 𝔻 → ℝ,
that has multiple minima; every 𝑥∗ ∈ [1 − √2, 1 + √2] yields 𝑓 (𝑥∗) = 0.

-2 -1 0 1 2 3 4 5
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4
6

8

x

f(x
)

x* [left] x* [right]

f(x*)

f(x)=max(0,(x − 1)2 − 2)

Figure 6.2: A function that has multiple minima

Remark. If thiswas the case of somemachine learningproblem, itwouldmean that
we could have many equally well-performing models, and hence many equivalent
explanations of the same phenomenon.

Moreover, it may happen that a function has multiple local minima, compare Figure
6.3.

Definition. We say that 𝑓 has a local minimum at 𝐱+ ∈ 𝔻, if for some neighbour-
hood 𝐵(𝐱+) of 𝐱+ it holds 𝑓 (𝐱+) ≤ 𝑓 (𝐱) for each 𝐱 ∈ 𝐵(𝐱+).

If 𝔻 = ℝ, by neighbourhood 𝐵(𝑥) of 𝑥 we mean an open interval centred at 𝑥 of
width 2𝑟 for some small 𝑟 > 0, i.e., (𝑥 − 𝑟, 𝑥 + 𝑟)

Definition. (*) If𝔻 = ℝ𝑝 (for any 𝑝 ≥ 1), by neighbourhood 𝐵(𝐱) of 𝐱 wemean an
open ball centred at 𝐱+ of some small radius 𝑟 > 0, i.e., {𝐲 ∶ ‖𝐱 − 𝐲‖ < 𝑟} (read: the
set of all the points with Euclidean distances to 𝐱 less than 𝑟).

To avoid ambiguity, the “true” minimum (a point 𝐱∗ such that 𝑓 (𝐱∗) ≤ 𝑓 (𝑥) for all
𝐱 ∈ 𝔻) is sometimes also referred to as a globalminimum.
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Figure 6.3: A function with two local minima

Remark. Of course, the global minimum is also a function’s local minimum.

The existence of local minima is problematic as most of the optimisation methods
might get stuck there and fail to return the global one.

Moreover, we cannot often be sure if the result returned by an algorithm is indeed
a global minimum.Maybe there exists a better solution that hasn’t been considered
yet? Or maybe the function is very noisy (see Figure 6.4)?
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Figure 6.4: Smooth vs. non-smooth vs. noisy objective functions
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6.1.4 Example Objective over a 2DDomain
Of course, our objective function does not necessarily have to be defined over a one-
dimensional domain.

For example, consider the following function:

𝑔(𝑥1, 𝑥2) = log ((𝑥2
1 + 𝑥2 − 5)2 + (𝑥1 + 𝑥2

2 − 3)2 + 𝑥2
1 − 1.60644 … )

g <- function(x1, x2)

log((x1^2+x2-5)^2+(x1+x2^2-3)^2+x1^2-1.60644366086443841)

x1 <- seq(-5, 5, length.out=100)

x2 <- seq(-5, 5, length.out=100)

# outer() expands two vectors to form a 2D grid

# and applies a given function on each point

y <- outer(x1, x2, g)

There are four local minima:

x1 x2 f(x1,x2)

2.2780 -0.61343 1.3564
-2.6123 -2.34546 1.7051
1.7988 1.19879 0.6955
-1.5423 2.15641 0.0000

The global minimum is at 𝐱∗ = (𝑥∗
1, 𝑥∗

2) as below:
g(-1.542255693195422641930153, 2.156405289793087261832605)

## [1] 0

Let’s explore various ways of depicting 𝑓 first. A contour plot and a heat map are
given in Figure 6.5.
par(mfrow=c(1,2)) # 2 in 1

# lefthand plot:

contour(x1, x2, y, nlevels=25)

points(-1.54226, 2.15641, col=2, pch=3)

# righthand plot:

image(x1, x2, y)

contour(x1, x2, y, add=TRUE)

Two perspective plots (views from different angles) are given in Figure 6.6.
par(mfrow=c(1,2)) # 2 in 1

persp(x1, x2, y, phi=30, theta=-5, shade=2, border=NA)

persp(x1, x2, y, phi=30, theta=75, shade=2, border=NA)
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Figure 6.5: A contour plot and a heat map of 𝑔(𝑥1, 𝑥2)
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Figure 6.6: Perspective plots of 𝑔(𝑥1, 𝑥2)
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Remark. As usual, depicting functions that are defined over high-dimensional (3D
and higher) domains is… difficult. Usually 1D or 2D projections can give us some
neat intuitions though.

6.2 IterativeMethods
6.2.1 Introduction
Many optimisation algorithms are built around the following scheme:

Starting from a random point, perform awalk, in each step deciding where to
go based on the idea of where the location of the minimummight be.

Example. Imagine we’re to cycle fromDeakin University’s Burwood Campus to the
CBD not knowing the route andwith GPS disabled –we’ll have to askmany people
along theway, butwe’ll eventually (becausemost people are good) get to someCBD
(say, in Perth).

More formally, we are interested in iterative algorithms that operate in a greedy-like
manner:

1. 𝐱(0) – initial guess (e.g., generated at random)

2. for 𝑖 = 1, ..., 𝑀:

a. 𝐱(𝑖) = 𝐱(𝑖−1) + [guessed direction]
b. if |𝑓 (𝐱(𝑖)) − 𝑓 (𝐱(𝑖−1))| < 𝜀 break

3. return 𝐱(𝑖) as result

Note that there are two stopping criteria, based on:

• 𝑀 =maximum number of iterations,
• 𝜀 = tolerance, e.g, 10−8.

6.2.2 Example in R
R has a built-in function, optim(), that provides an implementation of (amongst
others) the BFGSmethod (proposed by Broyden, Fletcher, Goldfarb and Shanno in
1970).
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Remark. (*) BFGS uses the assumption that the objective function is smooth –
the [guessed direction] is determined by computing the (partial) derivatives (or
their finite-difference approximations).However, theymightworkwell even if this
is not the case. We’ll be able to derive similar algorithms (called quasi-Newton
ones) ourselves once we learn about Taylor series approximation by reading a
book/taking a course on calculus.

Here, we shall use the BFGS as a black-box continuous optimisation method, i.e.,
without going into how it has been defined (in terms of our assumed math skills,
it might be too early for this). Despite that, will still be able to point out a few inter-
esting patterns.
optim(par, fn, method="BFGS")

where:

• par – an initial guess (a numeric vector of length 𝑝)
• fn – an objective function tominimise (takes a vector of length 𝑝 on input, returns
a single number)

Let us minimise the 𝑔 function defined above (the one with the 2D domain):
# g needs to be rewritten to accept a 2-ary vector

g_vectorised <- function(x12) g(x12[1], x12[2])

# random starting point with coordinates in [-5, 5]

(x12_init <- runif(2, -5, 5))

## [1] -2.1242 2.8831

(res <- optim(x12_init, g_vectorised, method="BFGS"))

## $par

## [1] -1.5423 2.1564

##

## $value

## [1] 1.4131e-12

##

## $counts

## function gradient

## 101 21

##

## $convergence

## [1] 0

##

## $message

## NULL

Note that:

• par gives the location of the local minimum found,
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• value gives the value of 𝑔 at par,
• convergenceof0 is a successful one (wewereable to satisfy the |𝑓 (𝐱(𝑖))−𝑓 (𝐱(𝑖−1))| <

𝜀 condition).

We can even depict the points that the algorithm is “visiting”, see Figure 6.7.

Remark. (*) Technically, the algorithmneeds to evaluate a fewmore points in order
tomake the decision onwhere to go next (BFGS approximates the gradient and the
Hessian matrix).

g_vectorised_plot <- function(x12) {

points(x12[1], x12[2], col=2, pch=3) # draw

g(x12[1], x12[2]) # return value

}

contour(x1, x2, y, nlevels=25)

res <- optim(x12_init, g_vectorised_plot, method="BFGS")

 0.5  1 

 1  1.5  1.5 

 2 

 2 

 2 

 2.5 

 2.5 

 3 

 3 

 3.5  4 

 4.5 

 5 

 5.5 

 6 

 6 

 6 

 6.5  6.5 

 6.5 

 7 

-4 -2 0 2 4

-4
-2

0
2

4

Figure 6.7: Each plotting symbol marks a point where the objective function was
evaluated by the BFGSmethod

6.2.3 Convergence to Local Optima
We were lucky, because the local minimum that the algorithm has found coincides
with the global minimum.

Let’s see where does the BFGS algorithm converge if seek theminimumof the above
𝑔 starting frommany randomly chosen points uniformly distributed over the square
[−5, 5] × [−5, 5]:
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res_value <- replicate(1000, {

# this will be iterated 100 times

x12_init <- runif(2, -5, 5)

res <- optim(x12_init, g_vectorised, method="BFGS")

res$value # return value from each iteration

})

table(round(res_value,3))

##

## 0 0.695 1.356 1.705

## 273 352 156 219

Unfortunately, we find the global minimum only in ∼ 25% cases, compare Figure
6.8.
hist(res_value, col="white", breaks=100, main=NA); box()

res_value
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Figure 6.8: A histogramof the objective function’s value at the localminimum found
when using a random initial guess

Figure 6.9 depicts all the random starting points and where do we converge from
them.

6.2.4 RandomRestarts
A kind of “remedy” for the above limitation could be provided by repeated local search:
in order to robustify an optimisation procedure it is often advised to consider mul-
tiple random initial points and pick the best solution amongst the identified local
optima.
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Figure 6.9: Each line segment connect a starting point to the point of BFGS’s conver-
gence; note that by starting in the neighbourhood of (0, −4)we can actually end up
in any of the 4 local minima

# N - number of restarts

# par_generator - a function generating initial guesses

# ... - further arguments to optim()

optim_with_restarts <- function(par_generator, ..., N=10) {

res_best <- list(value=Inf) # cannot be worse than this

for (i in 1:N) {

res <- optim(par_generator(), ...)

if (res$value < res_best$value)

res_best <- res # a better candidate found

}

res_best

}

optim_with_restarts(function() runif(2, -5, 5),

g_vectorised, method="BFGS", N=10)

## $par

## [1] -1.5423 2.1564

##

## $value

## [1] 3.9702e-13

##

## $counts
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## function gradient

## 48 17

##

## $convergence

## [1] 0

##

## $message

## NULL

Exercise 6.1 Food for thought: Can we really really guarantee that the global minimumwill
be found within𝑁 tries?

Solution.

Absolutely not.

■

6.3 Gradient Descent
6.3.1 Function Gradient (*)
How to choose the [guessed direction] in our iterative optimisation algorithm?

If we are minimising a smooth function, the simplest possible choice is to use the
information included in the objective’s gradient, which provides uswith the inform-
ation about the direction where the function decreases the fastest.

Definition. (*) Gradient of 𝑓 ∶ ℝ𝑝 → ℝ, denoted ∇𝑓 ∶ ℝ𝑝 → ℝ𝑝, is the vector of all
its partial derivatives, (∇ – nabla symbol = differential operator)

∇𝑓 (𝐱) =

⎡⎢⎢⎢⎢⎢
⎣

𝜕𝑓
𝜕𝑥1

(𝐱)
⋮

𝜕𝑓
𝜕𝑥𝑝

(𝐱)

⎤⎥⎥⎥⎥⎥
⎦

If we have a function 𝑓 (𝑥1, ..., 𝑥𝑝), the partial derivative w.r.t. the 𝑖-th variable, de-
noted 𝜕𝑓

𝜕𝑥𝑖
is like an ordinary derivative w.r.t. 𝑥𝑖 where 𝑥1, ..., 𝑥𝑖−1, 𝑥𝑖+1, ..., 𝑥𝑝 are

assumed constant.

Remark. Function differentiation is an important concept – see how it’s referred to
in, e.g., the keras package manual at https://keras.rstudio.com/reference/fit.ht
ml.

https://keras.rstudio.com/reference/fit.html
https://keras.rstudio.com/reference/fit.html
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Recall our 𝑔 function defined above:

𝑔(𝑥1, 𝑥2) = log ((𝑥2
1 + 𝑥2 − 5)2 + (𝑥1 + 𝑥2

2 − 3)2 + 𝑥2
1 − 1.60644 … )

It can be shown (*) that:

𝜕𝑔
𝜕𝑥1

(𝑥1, 𝑥2) =
4𝑥1(𝑥2

1 + 𝑥2 − 5) + 2(𝑥1 + 𝑥2
2 − 3) + 2𝑥1

(𝑥2
1 + 𝑥2 − 5)2 + (𝑥1 + 𝑥2

2 − 3)2 + 𝑥2
1 − 1.60644 …

𝜕𝑔
𝜕𝑥2

(𝑥1, 𝑥2) =
2(𝑥2

1 + 𝑥2 − 5) + 4𝑥2(𝑥1 + 𝑥2
2 − 3)

(𝑥2
1 + 𝑥2 − 5)2 + (𝑥1 + 𝑥2

2 − 3)2 + 𝑥2
1 − 1.60644 …

grad_g_vectorised <- function(x) {

c(

4*x[1]*(x[1]^2+x[2]-5)+2*(x[1]+x[2]^2-3)+2*x[1],

2*(x[1]^2+x[2]-5)+4*x[2]*(x[1]+x[2]^2-3)

)/(

(x[1]^2+x[2]-5)^2+(x[1]+x[2]^2-3)^2+x[1]^2-1.60644366086443841

)

}

6.3.2 Three Facts on the Gradient
For now, we should emphasise three important facts:

Fact 1. If we are incapable of deriving the gradient analytically, we can rely on its fi-
nite differences approximation. Each partial derivative can be estimated bymeans
of:

𝜕𝑓
𝜕𝑥𝑖

(𝑥1, … , 𝑥𝑝) ≃
𝑓 (𝑥1, ..., 𝑥𝑖 + 𝛿, ..., 𝑥𝑝) − 𝑓 (𝑥1, ..., 𝑥𝑖, ..., 𝑥𝑝)

𝛿

for some small 𝛿 > 0, say, 𝛿 = 10−6.

Remark. (*) Actually, a function’s partial derivative, by definition, is the limit of the
above as 𝛿 → 0.

Example implementation:
# gradient of f at x=c(x[1],...,x[p])

grad_approx <- function(f, x, delta=1e-6) {

p <- length(x)

gf <- numeric(p) # vector of length p

for (i in 1:p) {

xi <- x

xi[i] <- xi[i]+delta

gf[i] <- f(xi)

}
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(gf-f(x))/delta

}

Remark. (*) Interestingly, some modern vector/matrix algebra frameworks like
TensorFlow (uponwhich keras is built) or PyTorch, featuremethods to “derive” the
gradient algorithmically (autodiff; automatic differentiation).

Sanity check:
grad_approx(g_vectorised, c(-2, 2))

## [1] -3.1865 -1.3656

grad_g_vectorised(c(-2, 2))

## [1] -3.1865 -1.3656

grad_approx(g_vectorised, c(-1.542255693, 2.15640528979))

## [1] 1.0588e-05 1.9817e-05

grad_g_vectorised(c(-1.542255693, 2.15640528979))

## [1] 4.1292e-09 3.5771e-10

By theway, there is also the grad() function in package numDeriv thatmight be a little
more accurate (uses a different approximation formula).

Fact 2. The gradient of 𝑓 at 𝐱, ∇𝑓 (𝐱), is a vector that points in the direction of the
steepest slope. On the other hand,minus gradient,−∇𝑓 (𝐱), is the directionwhere
the function decreases the fastest.

Remark. (*) This can be shown by considering a function’s first-order Taylor series
approximation.

Each gradient is a vector, therefore it can be depicted as an arrow. Figure 6.10 il-
lustrates a few scaled gradients of the 𝑔 function at different points – each arrow
connects a point 𝐱 to 𝐱 ± 0.1∇𝑓 (𝐱).

Note that the blue arrows point more or less in the direction of the local minimum.
Therefore, in our iterative algorithm, we may try taking the direction of the minus
gradient! How far should we go in that direction? Well, a bit. We will refer to the
desired step size as the learning rate, 𝜂.

This will be called the gradient descentmethod (GD; Cauchy, 1847).

Fact 3. If a function 𝑓 has a local minimum at 𝐱∗, then its gradient vanishes there,
i.e., ∇𝑓 (𝐱∗) = [0, … , 0].

Note that the above condition is a necessary, not sufficient one. For example, the
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Figure 6.10: Scaled radients (pink arrows) and minus gradients (blue arrows) of
𝑔(𝑥1, 𝑥2) at different points

gradient also vanishes at a maximum or at a saddle point. In fact, we have what fol-
lows.

Theorem. (***)Moregenerally, a twice-differentiable functionhas a localminimum
at 𝐱∗ if andonly if its gradient vanishes there and∇2𝑓 (𝐱∗) (Hessianmatrix =matrix
of all second-order derivatives) is positive-definite.

6.3.3 Gradient Descent Algorithm (GD)
Taking the above into account, we arrive at the gradient descent algorithm:

1. 𝐱(0) – initial guess (e.g., generated at random)

2. for 𝑖 = 1, ..., 𝑀:

a. 𝐱(𝑖) = 𝐱(𝑖−1) − 𝜂∇𝑓 (𝐱(𝑖−1))
b. if |𝑓 (𝐱(𝑖)) − 𝑓 (𝐱(𝑖−1))| < 𝜀 break

3. return 𝐱(𝑖) as result

where 𝜂 > 0 is a step size frequently referred to as the learning rate, because that’s
muchmore cool. We usually set 𝜂 of small order of magnitude, say 0.01 or 0.1.

An implementation of the gradient descent algorithm is straightforward. In essence,
it’s the par <- par - eta*grad_g_vectorised(par) expression run in a loop, until
convergence.
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# par - initial guess

# fn - a function to be minimised

# gr - a function to return the gradient of fn

# eta - learning rate

# maxit - maximum number of iterations

# tol - convergence tolerance

optim_gd <- function(par, fn, gr, eta=0.01,

maxit=1000, tol=1e-8) {

f_last <- fn(par)

for (i in 1:maxit) {

par <- par - eta*grad_g_vectorised(par) # update step

f_cur <- fn(par)

if (abs(f_cur-f_last) < tol) break

f_last <- f_cur

}

list( # see ?optim, section `Value`

par=par,

value=g_vectorised(par),

counts=i,

convergence=as.integer(i==maxit)

)

}

Tests of the 𝑔 function. First, let’s try 𝜂 = 0.01. Figure 6.11 zooms in the contour plot
so that we can see the actual path the algorithm has taken.
eta <- 0.01

res <- optim_gd(c(-3, 1), g_vectorised, grad_g_vectorised, eta=eta)

str(res)

## List of 4

## $ par : num [1:2] -1.54 2.16

## $ value : num 1.33e-08

## $ counts : int 135

## $ convergence: int 0

Now let’s try 𝜂 = 0.05.
eta <- 0.05

res <- optim_gd(c(-3, 1), g_vectorised, grad_g_vectorised, eta=eta)

str(res)

## List of 4

## $ par : num [1:2] -1.54 2.15

## $ value : num 0.000203

## $ counts : int 417

## $ convergence: int 0
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Figure 6.11: Path taken by the gradient descent algorithmwith 𝜂 = 0.01

With an increased step size, the algorithm neededmanymore iterations (3 times as
many), see Figure 6.12 for the path taken.
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Figure 6.12: Path taken by the gradient descent algorithmwith 𝜂 = 0.05

And now for something completely different: 𝜂 = 0.1, see Figure 6.13.
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eta <- 0.1

res <- optim_gd(c(-3, 1), g_vectorised, grad_g_vectorised, eta=eta)

str(res)

## List of 4

## $ par : num [1:2] -1.52 2.33

## $ value : num 0.507

## $ counts : int 1000

## $ convergence: int 1
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Figure 6.13: Path taken by the gradient descent algorithmwith 𝜂 = 0.1

The algorithm failed to converge.

If the learning rate 𝜂 is too small, the convergencemight be too slow orwemight get
stuck at a plateau. On the other hand, if 𝜂 is too large, wemight be overshooting and
end up bouncing around the minimum.

This is why many optimisation libraries (including keras/TensorFlow) implement
some of the following ideas:

• learning rate decay– start with large 𝜂, decreasing it in every iteration, say, by some
percent;

• line search–determine optimal 𝜂 in every step by solving a 1-dimensional optimisa-
tion problemw.r.t. 𝜂 ∈ [0, 𝜂max];

• momentum – the update step is based on a combination of the gradient direction
and the previous change of the parameters, Δ𝐱; can be used to accelerate search in
the relevant direction andminimise oscillations.
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Exercise 6.2 Try implementing at least the first of the above heuristics yourself. You can set
eta <- eta*0.95 in every iteration of the gradient descent procedure.

6.3.4 Example:MNIST (*)
In the previous chapter we’ve studied the MNIST dataset. Let us go back to the task
of fitting a multiclass logistic regressionmodel.
library("keras")

mnist <- dataset_mnist()

## Loaded Tensorflow version 2.9.1

# get train/test images in greyscale

X_train <- mnist$train$x/255 # to [0,1]

X_test <- mnist$test$x/255 # to [0,1]

# get the corresponding labels in {0,1,...,9}:

Y_train <- mnist$train$y

Y_test <- mnist$test$y

The labels need to be one-hot encoded:
one_hot_encode <- function(Y) {

stopifnot(is.numeric(Y))

c1 <- min(Y) # first class label

cK <- max(Y) # last class label

K <- cK-c1+1 # number of classes

Y2 <- matrix(0, nrow=length(Y), ncol=K)

Y2[cbind(1:length(Y), Y-c1+1)] <- 1

Y2

}

Y_train2 <- one_hot_encode(Y_train)

Y_test2 <- one_hot_encode(Y_test)

Our task is to find the parameters𝐁 thatminimise cross entropy𝐸(𝐁) over the train-
ing set:

min
𝐁∈ℝ785×10

− 1
𝑛train

𝑛train

∑
𝑖=1

log Pr(𝑌 = 𝑦train𝑖 |𝐱train𝑖,⋅ ,𝐁).

In the previous chapter, we’ve relied on themethods implemented in the keras pack-
age. Let’s do that all by ourselves now.

In order to come up with a working version of the gradient descent proced-
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ure for classifying of MNIST digits, we will need to derive and implement
grad_cross_entropy(). We do that below using matrix notation.

Remark. In the first reading, you can jump to the Safe landing zone below
with no much loss in what we’re trying to convey here (you will then treat
grad_cross_entropy() as a black-box function). Nevertheless, keep in mind that
this is the kind of maths you will need tomaster anyway sooner than later – this is
inevitable. Perhaps you should go back to, e.g., the appendix on Matrix Computa-
tions with R or the chapter on Linear Regression? Learning maths is not a linear,
step-by-step process. Everyone is different and will have a different path to suc-
cess. The material needs to be frequently revisited, it will “click” someday, don’t
you worry; good stuff isn’t built in a day or seven.

Recall that the output of the logistic regression model (1-layer neural network with
softmax) can be written in the matrix form as:

�̂� = softmax (�̇� 𝐁) ,

where �̇� ∈ ℝ𝑛×785 is amatrix representing𝑛 images of size28×28, augmentedwith
a column of 1s, and 𝐁 ∈ ℝ785×10 is the coefficients matrix and softmax is applied
on eachmatrix row separately.

Of course, by the definition ofmatrixmultiplication, �̂�will be amatrix of size 𝑛×10,
where ̂𝑦𝑖,𝑘 represents the predicted probability that the 𝑖-th image depicts the 𝑘-th
digit.
# convert to matrices of size n*784

# and add a column of 1s

X_train1 <- cbind(1.0, matrix(X_train, ncol=28*28))

X_test1 <- cbind(1.0, matrix(X_test, ncol=28*28))

The nn_predict() function implements the above formula for �̂�:
softmax <- function(T) {

T <- exp(T)

T/rowSums(T)

}

nn_predict <- function(B, X) {

softmax(X %*% B)

}

Let’s define the functions to compute the cross-entropy (which we shall minimise)
and accuracy (which we shall report to a user):
cross_entropy <- function(Y_true, Y_pred) {

-sum(Y_true*log(Y_pred))/nrow(Y_true)

}
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accuracy <- function(Y_true, Y_pred) {

# both arguments are one-hot encoded

Y_true_decoded <- apply(Y_true, 1, which.max)

Y_pred_decoded <- apply(Y_pred, 1, which.max)

# proportion of equal corresponding pairs:

mean(Y_true_decoded == Y_pred_decoded)

}

It may be shown (**) that the gradient of cross-entropy (with respect to the para-
meter matrix 𝐁) can be expressed in the matrix form as:

1
𝑛 �̇�

𝑇 (�̂� − 𝐘)

grad_cross_entropy <- function(X, Y_true, Y_pred) {

t(X) %*% (Y_pred-Y_true)/nrow(Y_true)

}

Of course, we could always substitute the gradient with the finite difference approx-
imation. Yet, this would be much slower).

Themore mathematically inclined reader will sure notice that by expanding the for-
mulas given in the previous chapter, we can write cross-entropy in the non-matrix
form (𝑛– number of samples,𝐾 – number of classes, 𝑝 + 1– number ofmodel para-
meters; in our case 𝐾 = 10 and 𝑝 = 784) as:

𝐸(𝐁) = − 1
𝑛

𝑛
∑
𝑖=1

𝐾
∑
𝑘=1

𝑦𝑖,𝑘 log

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

exp⎛⎜⎜
⎝

𝑝
∑
𝑗=0

̇𝑥𝑖,𝑗𝛽𝑗,𝑘
⎞⎟⎟
⎠

𝐾
∑
𝑐=1

exp⎛⎜⎜
⎝

𝑝
∑
𝑗=0

̇𝑥𝑖,𝑗𝛽𝑗,𝑐
⎞⎟⎟
⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= 1
𝑛

𝑛
∑
𝑖=1

⎛⎜⎜
⎝
log⎛⎜⎜

⎝

𝐾
∑
𝑘=1

exp⎛⎜⎜
⎝

𝑝
∑
𝑗=0

̇𝑥𝑖,𝑗𝛽𝑗,𝑘
⎞⎟⎟
⎠

⎞⎟⎟
⎠

−
𝐾

∑
𝑘=1

𝑦𝑖,𝑘

𝑝
∑
𝑗=0

̇𝑥𝑖,𝑗𝛽𝑗,𝑘
⎞⎟⎟
⎠

.

Partial derivatives of cross-entropyw.r.t.𝛽𝑎,𝑏 in non-matrix formcanbe derived (**)
so as to get:

𝜕𝐸
𝜕𝛽𝑎,𝑏

(𝐁) = 1
𝑛

𝑛
∑
𝑖=1

̇𝑥𝑖,𝑎

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

exp⎛⎜⎜
⎝

𝑝
∑
𝑗=0

̇𝑥𝑖,𝑗𝛽𝑗,𝑏
⎞⎟⎟
⎠

𝐾
∑
𝑘=1

exp⎛⎜⎜
⎝

𝑝
∑
𝑗=0

̇𝑥𝑖,𝑗𝛽𝑗,𝑘
⎞⎟⎟
⎠

− 𝑦𝑖,𝑏

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= 1
𝑛

𝑛
∑
𝑖=1

̇𝑥𝑖,𝑎 ( ̂𝑦𝑖,𝑏 − 𝑦𝑖,𝑏) .



Continuous Optimisation with Iterative Algorithms (*) 193

Safe landing zone. In case you’re lost with the above, continue from here. However,
in the near future, harden up and revisit the skipped material to get the most out
of our discussion.

We now have all the building blocks to implement the gradient descent method.
The algorithm below follows exactly the same scheme as the one in the 𝑔 func-
tion example. This time, however, we play with a parameter matrix 𝐁 (not a para-
meter vector [𝑥1, 𝑥2]) and we compute the gradient of cross-entropy (by means of
grad_cross_entropy()), not the gradient of 𝑔.

Note that a call to system.time(expr)measures the time (in seconds) spent evaluat-
ing an expression expr.
# random matrix of size 785x10 - initial guess

B <- matrix(rnorm(ncol(X_train1)*ncol(Y_train2)),

nrow=ncol(X_train1))

eta <- 0.1 # learning rate

maxit <- 100 # number of GD iterations

system.time({ # measure time spent

# for simplicity, we stop only when we reach maxit

for (i in 1:maxit) {

B <- B - eta*grad_cross_entropy(

X_train1, Y_train2, nn_predict(B, X_train1))

}

}) # `user` - processing time in seconds:

## user system elapsed

## 90.573 39.037 32.149

Unfortunately, themethod’s convergence is really slow (we are optimising over 7850
parameters…) and the results after 100 iterations are disappointing:
accuracy(Y_train2, nn_predict(B, X_train1))

## [1] 0.46462

accuracy(Y_test2, nn_predict(B, X_test1))

## [1] 0.4735

Recall that in the previous chapter we obtained much better classification accuracy
by using the keras package. What are we doing wrong then? Maybe keras imple-
ments some Super-Fancy Hyper Optimisation Framework (TM) (R) that we could
get access to for only $19.99 per month?

6.3.5 Stochastic Gradient Descent (SGD) (*)
In turns out that there’s a very simple cure for the slow convergence of our method.

It might be shocking for some, but sometimes the true global minimum of cross-
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entropy for the whole training set is not exactly what we reallywant. In our predict-
ive modelling task, we are minimising train error, but what we actually desire is to
minimise the test error (which we cannot refer to while training = no cheating!).

It is therefore rational to assume that both the train and the test set consist of ran-
dom digits independently sampled from the set of “all the possible digits out there
in the world”.

Looking at the original objective (cross-entropy):

𝐸(𝐁) = − 1
𝑛train

𝑛train

∑
𝑖=1

log Pr(𝑌 = 𝑦train𝑖 |𝐱train𝑖,⋅ ,𝐁).

How about we try fitting to different random samples of the train set in each itera-
tion of the gradient descent method instead of fitting to the whole train set?

𝐸(𝐁) ≃ −1
𝑏

𝑏
∑
𝑖=1

log Pr(𝑌 = 𝑦trainrandom_index𝑖
|𝐱trainrandom_index𝑖,⋅

,𝐁),

where 𝑏 is somefixedbatch size. Suchanapproach is often called stochasticgradient
descent.

Remark. This scheme is sometimes referred to as mini-batch gradient descent in
the literature; some researchers reserve the term “stochastic” only for batches of
size 1.

Stochastic gradient descent can be implemented very easily:
B <- matrix(rnorm(ncol(X_train1)*ncol(Y_train2)),

nrow=ncol(X_train1))

eta <- 0.1

maxit <- 100

batch_size <- 32

system.time({

for (i in 1:maxit) {

wh <- sample(nrow(X_train1), size=batch_size)

B <- B - eta*grad_cross_entropy(

X_train1[wh,], Y_train2[wh,],

nn_predict(B, X_train1[wh,])

)

}

})

## user system elapsed

## 0.078 0.005 0.082
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accuracy(Y_train2, nn_predict(B, X_train1))

## [1] 0.46198

accuracy(Y_test2, nn_predict(B, X_test1))

## [1] 0.4693

The errors are much worse but at least we got the (useless) solution very quickly.
That’s the “fail fast” rule in practice.

However, why don’t we increase the number of iterations and see what happens?
We’ve allowed the classic gradient descent to scrabble around theMNIST dataset for
almost 2 minutes.
B <- matrix(rnorm(ncol(X_train1)*ncol(Y_train2)),

nrow=ncol(X_train1))

eta <- 0.1

maxit <- 10000

batch_size <- 32

system.time({

for (i in 1:maxit) {

wh <- sample(nrow(X_train1), size=batch_size)

B <- B - eta*grad_cross_entropy(

X_train1[wh,], Y_train2[wh,],

nn_predict(B, X_train1[wh,])

)

}

})

## user system elapsed

## 7.312 0.140 7.453

accuracy(Y_train2, nn_predict(B, X_train1))

## [1] 0.89222

accuracy(Y_test2, nn_predict(B, X_test1))

## [1] 0.8935

Bingo! Let’s take a closer look at how the train/test error behaves in each iteration for
different batch sizes. Figures 6.14 and 6.15 depict the cases of batch_size of 32 and
128, respectively.

The time needed to go through 10000 iterations with batch size of 32 is:

## user system elapsed

## 82.636 25.538 32.599

What’s more, batch size of 128 takes:
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Figure 6.14: Cross-entropy and accuracy on the train and test set in each iteration of
SGD; batch size of 32

## user system elapsed

## 198.066 93.369 56.396
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Figure 6.15: Cross-entropy and accuracy on the train and test set in each iteration of
SGD; batch size of 128

Exercise 6.3 Draw conclusions.
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6.4 ANote on ConvexOptimisation (*)
Are there any cases where we are sure that a local minimum is the global minimum?
It turns out that the answer to this is positive; for example, when we minimise ob-
jective functions that fulfil a special property defined below.

First let’s note that given two points 𝐱1, 𝐱2 ∈ ℝ𝑝, by taking any 𝜃 ∈ [0, 1], the point
defined as:

𝐭 = 𝜃𝐱1 + (1 − 𝜃)𝐱2

lies on a (straight) line segment between 𝐱1 and 𝐱2.

Definition. We say that a function 𝑓 ∶ ℝ𝑝 → ℝ is convex, whenever:

(∀𝐱1, 𝐱2 ∈ ℝ𝑝)(∀𝜃 ∈ [0, 1]) 𝑓 (𝜃𝐱1 + (1 − 𝜃)𝐱2) ≤ 𝜃𝑓 (𝐱1) + (1 − 𝜃)𝑓 (𝐱2)

In other words, the function’s value at any convex combination of two points is not
greater than that combination of the function values at these two points. See Figure
6.16 for a graphical illustration of the above.

Figure 6.16: An illustration of the definition of a convex function

The following result addresses the questionweposed at the beginning of this section.

Theorem. For any convex function 𝑓 , if 𝑓 has a local minimum at 𝐱+ then 𝐱+ is also
its global minimum.

Convex functions are ubiquitous in machine learning, but of course not every ob-
jective function we are going to deal with will fulfil this property. Here are some
basic examples of convex functions and how they come into being, see, e.g., (Boyd
& Vandenberghe 2004) for more:

• the functions mapping 𝑥 to 𝑥, 𝑥2, |𝑥|, 𝑒𝑥 are all convex,
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• 𝑓 (𝑥) = |𝑥|𝑝 is convex for all 𝑝 ≥ 1,
• if 𝑓 is convex, then−𝑓 is concave,
• if 𝑓1 and 𝑓2 are convex, then𝑤1𝑓1 + 𝑤2𝑓2 are convex for any𝑤1, 𝑤2 ≥ 0,
• if 𝑓1 and 𝑓2 are convex, thenmax{𝑓1, 𝑓2} is convex,
• if 𝑓 and 𝑔 are convex and 𝑔 is non-decreasing, then 𝑔(𝑓 (𝑥)) is convex.

The above feature the building blocks of our error measures in supervised learning
problems! In particular, sum of squared residuals in linear regression is a convex
function of the underlying parameters. Also, cross-entropy in logistic regression is
a convex function of the underlying parameters.

Theorem. (***) If a function is twice differentiable, then its convexity can be judged
based on the positive-definiteness of its Hessian matrix.

Note that optimising convex functions is relatively easy, especially if they are differ-
entiable.This is because they are quite well-behaving. However, it doesn’tmean that
we an analytic solution to the problemof theirminimisation.Methods such as gradi-
ent descent or BFGS shouldworkwell (unless there are vast regionswhere a function
is constant or the function’s is defined over a large number of parameters).

Remark. (**)There is a special class of constrainedoptimisationproblems called lin-
ear and, more generally, quadratic programming that involves convex functions.
Moreover, the Karush–Kuhn–Tucker (KKT) conditions address the more general
problemofminimisationwith constraints (i.e., not over thewholeℝ𝑝 set); see (No-
cedal &Wright 2006, Fletcher 2008) for more details.

Remark. Not only functions, but also sets can be said to be convex.We say that𝐶 ⊆
ℝ𝑝 is a convex set, whenever the line segment joining any two points in 𝐶 is fully
included in 𝐶. More formally, for every 𝐱1 ∈ 𝐶 and 𝐱2 ∈ 𝐶, it holds 𝜃𝐱1 + (1 −
𝜃)𝐱2 ∈ 𝐶 for all 𝜃 ∈ [0, 1]; see Figure 6.17 for an illustration.

convex set non-convex set

Figure 6.17: A convex and a non-convex set
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6.5 Outro
6.5.1 Remarks
Solving continuous problems with many variables (e.g., deep neural networks) is
time consuming – the more variables to optimise over (e.g., model parameters,
think the number of interconnections between all the neurons), the slower the op-
timisation process.

Moreover, it might be the case that the sole objective function takes long to compute
(think of image classification with large training samples).

Remark. (*) Although theoretically possible, good luck fitting a logistic regression
model to MNIST with optim()’s BFGS – there are 7850 variables!

Training deepneural networkswith SGD is even slower (more parameters), but there
is a trick to propagate weight updates layer by layer, called backpropagation (actually
used in every neural network library), see, e.g., (Sarle et al. 2002) and (Goodfellow et
al. 2016).Moreover, keras and similar libraries implement automatic differentiation
procedures that make its user’s life much easier (swiping some of the tedious math
under the comfy carpet).

keras implements various optimisers that we can refer to in the compile() function,
see https://keras.rstudio.com/reference/compile.html and https://keras.io/optim
izers/:

• SGD – stochastic gradient descent supporting momentum and learning rate decay,

• RMSprop – divides the gradient by a running average of its recent magnitude,

• Adam – adaptive momentum,

and so on.These are all non-complicated variations of the pure stochastic GD. Some
of them are just tricks that workwell in some examples and destroy the convergence
onmany other ones. You can get into their details in a dedicated book/course aimed
at covering neural networks (see, e.g., (Sarle et al. 2002), (Goodfellow et al. 2016)),
but we have already developed some good intuitions here.

Keep inmind that withmethods such as GD or SGD, there is no guarantee we reach
aminimum, but an approximate solution is better than no solution at all. Also some-
times (especially in ML applications) we don’t really need the actual minimum (e.g.,
whenoptimising the errorwith respect to the train set).Those “mathematically pure”
will find that abit…unaesthetic, buthereweare.Maybe the solutionmakes yourboss
or client happy, maybe it generates revenue. Maybe it helps solve some other prob-
lem. Some claim that a solution is better than no solution at all, remember? But… is
it really always the case though?

https://keras.rstudio.com/reference/compile.html
https://keras.io/optimizers/
https://keras.io/optimizers/
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6.5.2 Further Reading
Recommended further reading: (Nocedal & Wright 2006), (Boyd & Vandenberghe
2004), (Fletcher 2008).



7
Clustering

These lecture notes are distributed in the hope that theywill be useful.
Any bug reports are appreciated.

7.1 Unsupervised Learning
7.1.1 Introduction
In unsupervised learning (learning without a teacher), the input data points
𝐱1,⋅, … , 𝐱𝑛,⋅ are not assigned any reference labels (compare Figure 7.1).
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Figure 7.1: Unsupervised learning: “But what it is exactly that I have to do here?”
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Our aim now is to discover the underlying structure in the data, whatever that
means.

7.1.2 Main Types of Unsupervised Learning Problems
It turns out, however, that certain classes of unsupervised learning problems are not
only intellectually stimulating, but practically useful at the same time.

In particular, in dimensionality reductionwe seek a meaningful projection of a high
dimensional space (think: many variables/columns).
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Figure 7.2: Principal component analysis (a dimensionality reduction technique) ap-
plied on three features of red wines

For instance, Figure 7.2 reveals that the “alcohol”, “response” and “residual.sugar”
dimensions of theWine Quality dataset that we have studied earlier on can actually
be nicely depicted (with nomuch loss of information) on a two-dimensional plot. It
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turns out that the wine experts’ opinion on a wine’s quality is highly correlated with
the amount of… alcohol in a bottle. On the other hand, sugar is orthogonal (unre-
lated) to these two.

Amongst example dimensionality reductionmethods we find:

• Multidimensional scaling (MDS)
• Principal component analysis (PCA)
• Kernel PCA
• t-SNE
• Autoencoders (deep learning)

See, for example, (Hastie et al. 2017) for more details.

Furthermore, in anomaly detection, our task is to identify rare, suspicious, ab-
normal or out-standing items.For example, these canbe carsonwalkways inapark’s
security camera footage.
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Figure 7.3: (#fig:anomaly_detection) Outliers can be thought of anomalies of some
sort

Finally, the aim of clustering is to automatically discover some naturally occurring
subgroups in the data set, compare Figure 7.4. For example, these may be cus-
tomers having different shopping patterns (such as “young parents”, “students”,
“boomers”).
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Figure 7.4: NEWSFLASH!SCIENTISTSSHOWED(bywritingabout it) THATSOME
VERY IMPORTANT THING (Iris dataset) COMES IN THREE DIFFERENT FLA-
VOURS (by applying the 3-means clustering algorithm)!

7.1.3 Definitions
Formally, given𝐾 ≥ 2, clustering aims is to find a special kind of a𝐾-partition of the
input data set𝐗.
Definition. We say that 𝒞 = {𝐶1, … , 𝐶𝐾} is a 𝐾-partition of𝐗 of size 𝑛, whenever:

• 𝐶𝑘 ≠ ∅ for all 𝑘 (each set is nonempty),
• 𝐶𝑘 ∩ 𝐶𝑙 = ∅ for all 𝑘 ≠ 𝑙 (sets are pairwise disjoint),
• ⋃𝐾

𝑘=1 𝐶𝑘 = 𝐗 (no point is neglected).
This can also be thought of as assigning each point a unique label {1, … , 𝐾} (think:
colouring of the points, where each number has a colour).Wewill consider the point
𝐱𝑖,⋅ as labelled 𝑗 if and only if it belongs to cluster 𝐶𝑗, i.e., 𝐱𝑖,⋅ ∈ 𝐶𝑗.

Example applications of clustering:

• taxonomisation: e.g., partition the consumers to more “uniform” groups to better
understand who they are and what do they need,

• image processing: e.g., object detection, like tumour tissues onmedical images,
• complex networks analysis: e.g., detecting communities in friendship, retweets and
other networks,

• fine-tuning supervised learning algorithms: e.g., recommender systems indicating
content that was rated highly by users from the same group or learning multiple
manifolds in a dimension reduction task.
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The number of possible 𝐾-partitions of a set with 𝑛 elements is given by the Stirling
number of the second kind:

{ 𝑛
𝐾 } = 1

𝐾!
𝐾

∑
𝑗=0

(−1)𝐾−𝑗(𝐾
𝑗 )𝑗𝑛;

e.g., already { 𝑛
2 } = 2𝑛−1 − 1 and { 𝑛

3 } = 𝑂(3𝑛) – that is a lot. Certainly, we are not
just interested in “any” partition– someof themwill bemoremeaningful or valuable
than others. However, even one of the most famous ML textbooks provides us with
only a vague hint of what wemight be looking for:

“Definition”. Clustering concerns “segmenting a collection of objects into subsets
so that those within each cluster are more closely related to one another than ob-
jects assigned to different clusters” (Hastie et al. 2017).

It is not uncommon to equate the general definition of data clustering problems
with… the particular outputs yield by specific clustering algorithms. It some sense,
that sounds fair. From this perspective, we might be interested in identifying the
twomain types of clustering algorithms:

• parametric (model-based):
– find clusters of specific shapes or following specificmultidimensional probab-
ility distributions,

– e.g., 𝐾-means, expectation-maximisation for Gaussian mixtures (EM), aver-
age linkage agglomerative clustering;

• nonparametric (model-free):
– identify high-density or well-separable regions, perhaps in the presence of
noise points,

– e.g., single linkage agglomerative clustering, Genie, (H)DBSCAN, BIRCH.

In this chapter we’ll take a look at two classical approaches to clustering:

• K-means clustering that looks for a specific number of clusters,
• (agglomerative) hierarchical clustering that outputs a whole hierarchy of nested data
partitions.

7.2 K-means Clustering
7.2.1 Example in R
Let’s begin our clustering adventure by applying the 𝐾-means clustering method to
find 𝐾 = 3 groups in the famous Fisher’s iris data set (variables Sepal.Width and
Petal.Length variables only):
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X <- as.matrix(iris[,c(3,2)])

# never forget to set nstart>>1!

km <- kmeans(X, centers=3, nstart=10)

km$cluster # labels assigned to each of 150 points:

## [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

## [35] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

## [69] 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

## [ reached getOption("max.print") -- omitted 51 entries ]

Remark. Later we’ll see that nstart is responsible for random restarting the (local)
optimisation procedure, just as we did in the previous chapter.

Let’s draw a scatter plot that depicts the detected clusters:
plot(X, col=km$cluster)
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Figure 7.5: 3-means clustering on a projection of the Iris dataset

The colours in Figure 7.5 indicate the detected clusters.The left group is clearly well-
separated from the other two.

What can we do with this information? Well, if we were experts on plants (in the
1930s), that’d definitely be something ground-breaking. Figure 7.6 is a version of the
aforementioned scatter plot now with the true iris species added.
plot(X, col=km$cluster, pch=as.numeric(iris$Species))

Here is a contingency table for detected clusters vs. true iris species:
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Figure 7.6: 3-means clustering (colours) vs true Iris species (shapes)

(C <- table(km$cluster, iris$Species))

##

## setosa versicolor virginica

## 1 50 0 0

## 2 0 2 41

## 3 0 48 9

It turns out that the discovered partition matches the original iris species very well.
We have just made a “discovery” in the field of botany (actually some research fields
classify their objects of study into families, genres etc. by means of such tools).

Were the actual Iris species what we had hoped to match? Was that our aim? Well,
surelywehavehadbegunour journeywith “clearminds” (yetwithhungry eyes).Note
that the true class labels were not used during the clustering procedure –we’re deal-
ing with an unsupervised learning problem here.The result turned useful, it’s a win.

Remark. (*)There are several indices that assess the similarity of two partitions, for
example the Adjusted Rand Index (ARI) the NormalisedMutual Information Score
(NMI) or set matching-based measures, see, e.g., (Hubert & Arabie 1985), (Rezaei
& Fränti 2016).

7.2.2 ProblemStatement
The aim of 𝐾-means clustering is to find 𝐾 “good” cluster centres𝝁1,⋅, … , 𝝁𝐾,⋅.



208 LightweightMachine Learning Classics with R

Then, a point 𝐱𝑖,⋅ will be assigned to the cluster represented by the closest centre.
Here, by closest wemean the squared Euclidean distance.

More formally, assuming all the points are in a 𝑝-dimensional space,ℝ𝑝, we define
the distance between the 𝑖-th point and the 𝑘-th centre as:

𝑑(𝐱𝑖,⋅, 𝝁𝑘,⋅) = ‖𝐱𝑖,⋅ − 𝝁𝑘,⋅‖2 =
𝑝

∑
𝑗=1

(𝑥𝑖,𝑗 − 𝜇𝑘,𝑗)
2

Then the 𝑖-th point’s cluster is determined by:

C(𝑖) = arg min
𝑘=1,…,𝐾

𝑑(𝐱𝑖,⋅, 𝝁𝑘,⋅),

where, as usual, argmin (argument minimum) is the index 𝑘 that minimises the
given expression.

In the previous example, the three identified cluster centres inℝ2 are given by (see
Figure 7.7 for illustration):
km$centers

## Petal.Length Sepal.Width

## 1 1.4620 3.4280

## 2 5.6721 3.0326

## 3 4.3281 2.7509

plot(X, col=km$cluster, asp=1) # asp=1 gives the same scale on both axes

points(km$centers, cex=2, col=4, pch=16)

Figure 7.8depicts thepartitionof thewholeℝ2 space into clustersbasedon theclose-
ness to the three cluster centres.

To compute the distances between all the points and the cluster centres, wemay call
pdist::pdist():
library("pdist")

D <- as.matrix(pdist(X, km$centers))^2

head(D)

## [,1] [,2] [,3]

## [1,] 0.009028 18.469 9.1348

## [2,] 0.187028 18.252 8.6357

## [3,] 0.078228 19.143 9.3709

## [4,] 0.109028 17.411 8.1199

## [5,] 0.033428 18.573 9.2946

## [6,] 0.279428 16.530 8.2272
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Figure 7.7: Cluster centres (blue dots) identified by the 3-means algorithm

Figure 7.8: The division of the whole space into three sets based on the proximity to
cluster centres (a so-called Voronoi diagram)
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where D[i,k] gives the squared Euclidean distance between 𝐱𝑖,⋅ and𝝁𝑘,⋅.

The cluster memberships the (argmins) can now be determined by:
(idx <- apply(D, 1, which.min)) # for every row of D...

## [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

## [35] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

## [69] 3 3 3 3 3 3 3 3 3 2 3 3 3 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

## [ reached getOption("max.print") -- omitted 51 entries ]

all(km$cluster == idx) # sanity check

## [1] TRUE

7.2.3 Algorithms for the K-means Problem
All good, but howdowefind “good” cluster centres? Good, better, best… yet againwe
are in a need for a goodness-of-fitmetric. In the𝐾-means clustering, we determine
𝝁1,⋅, … , 𝝁𝐾,⋅ that minimise the total within-cluster distances (distances from each
point to each own cluster centre):

min
𝝁1,⋅,…,𝝁𝐾,⋅∈ℝ𝑝

𝑛
∑
𝑖=1

𝑑(𝐱𝑖,⋅, 𝝁𝐶(𝑖),⋅),

Note that the 𝝁s are also “hidden” inside the point-to-cluster belongingness map-
ping, C. Expanding the above yields:

min
𝝁1,⋅,…,𝝁𝐾,⋅∈ℝ𝑝

𝑛
∑
𝑖=1

⎛⎜⎜
⎝
min

𝑘=1,…,𝐾

𝑝
∑
𝑗=1

(𝑥𝑖,𝑗 − 𝜇𝑘,𝑗)
2⎞⎟⎟
⎠

.

Unfortunately, the min operator in the objective function makes this optimisation
problem not tractable with the methods discussed in the previous chapter.

Theaboveproblem is hard to solve (*moreprecisely, it is anNP-hardproblem).There-
fore, in practice we use various heuristics to solve it.The kmeans() function itself im-
plements 3 of them: the Hartigan-Wong, Lloyd (a.k.a. Lloyd-Forgy) and MacQueen
algorithms.

Remark. (*) Technically, there is no such thing as “the K-means algorithm” – all
the aforementioned methods are particular heuristic approaches to solving the
K-means clustering problem formalised as the above optimisation task. By set-
ting nstart = 10 above, we ask the (Hartigan-Wong, which is the default one in
kmeans()) algorithm to find 10 solution candidates obtained by considering differ-
ent random initial clusterings and choose the best one (with respect to the sum of
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within-cluster distances) amongst them. This does not guarantee finding the op-
timal solution, especially for very unbalanceddatasets, but increases the likelihood
of such.

Remark. The squared Euclidean distance was of course chosen to make computa-
tions easier. It turns out that for any given subset of input points 𝐱𝑖1,⋅, … , 𝐱𝑖𝑚,⋅, the
point𝝁𝑘,⋅ that minimises the total distances to all of them, i.e.,

min
𝝁𝑘,⋅∈ℝ𝑝

𝑚
∑
ℓ=1

⎛⎜⎜
⎝

𝑝
∑
𝑗=1

(𝑥𝑖ℓ,𝑗 − 𝜇𝑘,𝑗)
2⎞⎟⎟
⎠

,

is exactly these points’ centroid – which is given by the componentwise arithmetic
means of their coordinates.

For example:
colMeans(X[km$cluster == 1,]) # centroid of the points in the 1st cluster

## Petal.Length Sepal.Width

## 1.462 3.428

km$centers[1,] # the centre of the 1st cluster

## Petal.Length Sepal.Width

## 1.462 3.428

Among the various heuristics to solve the K-means problem, Lloyd’s algorithm (1957)
is perhaps the simplest. This is probably the reason why it is sometimes referred to
as “the” K-means algorithm:

1. Start with random cluster centres𝝁1,⋅, … , 𝝁𝐾,⋅.

2. For each point 𝐱𝑖,⋅, determine its closest centre 𝐶(𝑖) ∈ {1, … , 𝐾}:

C(𝑖) = arg min
𝑘=1,…,𝐾

𝑑(𝐱𝑖,⋅, 𝝁𝑘,⋅).

3. For each cluster 𝑘 ∈ {1, … , 𝐾}, compute the new cluster centre 𝝁𝑘,⋅ as
the centroid of all the point indices 𝑖 such that 𝐶(𝑖) = 𝑘.

4. If the cluster centres changed since the last iteration, go to step 2, other-
wise stop and return the result.

(*) Here’s an example implementation. As the initial cluster centres, let’s pick some
“noisy” versions of 𝐾 randomly chosen points in𝐗.
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set.seed(12345)

K <- 3

# Random initial cluster centres:

M <- jitter(X[sample(1:nrow(X), K),])

M

## Petal.Length Sepal.Width

## [1,] 5.1004 3.0814

## [2,] 4.7091 3.1861

## [3,] 3.3196 2.4094

In what follows, we will be maintaining a matrix such that D[i,k] is the distance
between the 𝑖-th point and the 𝑘-th centre and a vector such that idx[i] denotes the
index of the cluster centre closest to the i-th point.
D <- as.matrix(pdist(X, M))^2

idx <- apply(D, 1, which.min)

repeat {

# Determine the new cluster centres:

M <- t(sapply(1:K, function(k) {

# the centroid of all points in the k-th cluster:

colMeans(X[idx==k,])

}))

# Store the previous cluster belongingness info:

old_idx <- idx

# Recompute D and idx:

D <- as.matrix(pdist(X, M))^2

idx <- apply(D, 1, which.min)

# Check if converged already:

if (all(idx == old_idx)) break

}

Let’s compare the obtained cluster centres with the ones returned by kmeans():
M # our result

## Petal.Length Sepal.Width

## [1,] 5.6721 3.0326

## [2,] 4.3281 2.7509

## [3,] 1.4620 3.4280

km$center # result of kmeans()
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## Petal.Length Sepal.Width

## 1 1.4620 3.4280

## 2 5.6721 3.0326

## 3 4.3281 2.7509

These two represent exactly the same 3-partitions (note that the actual labels (the
order of centres) are not important).

The value of the objective function (total within-cluster distances) at the identified
candidate solution is equal to:
sum(D[cbind(1:nrow(X),idx)]) # indexing with a 2-column matrix!

## [1] 40.737

km$tot.withinss # as reported by kmeans()

## [1] 40.737

We would need it if we were to implement the nstart functionality, which is left as
an:

Exercise 7.1 (*) Wrap the implementation of the Lloyd algorithm into a standalone R func-
tion, with a similar look-and-feel as the original kmeans().
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Figure 7.9: The arrows denote the cluster centres in each iteration of the Lloyd al-
gorithm

On a side note, our algorithm needed 4 iterations to identify the (locally optimal)
cluster centres. Figure 7.9 depicts its quest for the clustering grail.
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7.3 AgglomerativeHierarchical Clustering
7.3.1 Introduction
In K-means, we need to specify the number of clusters, 𝐾, in advance. What if we
don’t have any idea how to choose this parameter (which is often the case)?

Also, the problem with K-means is that there is no guarantee that a 𝐾-partition is
any “similar” to the 𝐾′-one for 𝐾 ≠ 𝐾′, see Figure 7.10.
km1 <- kmeans(X, 3, nstart=10)

km2 <- kmeans(X, 4, nstart=10)

plot(X, col=km1$cluster, pch=km2$cluster, asp=1)
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Figure 7.10: 3-means (colours) vs. 4-means (symbols) on example data; the “circle”
cluster cannot decide if it likes the green or the black one more

Hierarchical methods, on the other hand, output a whole hierarchy of mutually nes-
tedpartitions,which increase the interpretability of the results. A𝐾-partition for any
𝐾 can be extracted later at any time.

In this book we will be interested in agglomerative hierarchical algorithms:

• at the lowest level of the hierarchy, each point belongs to its own cluster (there are
𝑛 singletons);

• at thehighest level of thehierarchy, there is one cluster that embraces all the points;
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• moving from the 𝑖-th to the (𝑖 + 1)-th level, we select (somehow; see below) a pair
of clusters to be merged.

7.3.2 Example in R
The most basic implementation of a few agglomerative hierarchical clustering al-
gorithms is provided by the hclust() function, which works on a pairwise distance
matrix.
# Euclidean distances between all pairs of points:

D <- dist(X)

# Apply Complete Linkage (the default, details below):

h <- hclust(D) # method="complete"

print(h)

##

## Call:

## hclust(d = D)

##

## Cluster method : complete

## Distance : euclidean

## Number of objects: 150

Remark. There are𝑛(𝑛−1)/2uniquepairwise distances between𝑛points.Don’t try
calling dist() on large datamatrices. Already 𝑛 = 100,000 points consumes 40 GB
of available memory (assuming that each distance is stored as an 8-byte double-
precision floating point number); packages fastcluster and genieclust, among
other, aim to solve this problem.

The obtained hierarchy (tree) can be cut at an arbitrary level by applying the cutree()
function.
cutree(h, k=3) # extract the 3-partition

## [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

## [35] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

## [69] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

## [ reached getOption("max.print") -- omitted 51 entries ]

Thecuts of the hierarchy at different levels are depicted in Figure 7.11.Theobtained 3-
partition also matches the true Iris species quite well. However, now it makes total
sense to “zoom” our partitioning in or out and investigate how are the subgroups
decomposed or aggregated when we change 𝐾.
par(mfrow=c(2,2))

plot(X, col=cutree(h, k=5), ann=FALSE)

legend("top", legend="k=5", bg="white")

plot(X, col=cutree(h, k=4), ann=FALSE)

legend("top", legend="k=4", bg="white")
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plot(X, col=cutree(h, k=3), ann=FALSE)

legend("top", legend="k=3", bg="white")

plot(X, col=cutree(h, k=2), ann=FALSE)

legend("top", legend="k=2", bg="white")
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Figure 7.11: Complete linkage – 4 different cuts

7.3.3 Linkage Functions
Let’s formalise the clustering process. Initially, 𝒞(0) = {{𝐱1,⋅}, … , {𝐱𝑛,⋅}}, i.e., each
point is a member of its own cluster.

While an agglomerative hierarchical clustering algorithm is being computed, there
are 𝑛 − 𝑘 clusters at the 𝑘-th step of the procedure, 𝒞(𝑘) = {𝐶(𝑘)

1 , … , 𝐶(𝑘)
𝑛−𝑘}.

When proceeding from step 𝑘 to 𝑘 + 1, we determine the two groups 𝐶(𝑘)
𝑢 and 𝐶(𝑘)

𝑣 ,
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𝑢 < 𝑣, to bemerged together so that the clustering at the higher level is of the form:

𝒞(𝑘+1) = {𝐶(𝑘)
1 , … , 𝐶(𝑘)

𝑢−1, 𝐶(𝑘)
𝑢 ∪𝐶(𝑘)

𝑣 , 𝐶(𝑘)
𝑢+1, … , 𝐶(𝑘)

𝑣−1, 𝐶(𝑘)
𝑣+1, … , 𝐶(𝑘)

𝑛−𝑘} .

Thus, (𝒞(0), 𝒞(1), … , 𝒞(𝑛−1)) forma sequence ofnestedpartitions of the input dataset
with the last level being just one big cluster, 𝒞(𝑛−1) = {{𝐱1,⋅, 𝐱2,⋅, … , 𝐱𝑛,⋅}}.

There is onecomponentmissing–howtodetermine thepair of clusters𝐶(𝑘)
𝑢 and𝐶(𝑘)

𝑣
to be merged with each other at the 𝑘-th iteration? Of course this will be expressed
as some optimisation problem (although this time, a simple one)! The decision will
be based on:

argmin
𝑢<𝑣

𝑑∗(𝐶(𝑘)
𝑢 , 𝐶(𝑘)

𝑣 ),

where 𝑑∗(𝐶(𝑘)
𝑢 , 𝐶(𝑘)

𝑣 ) is the distance between two clusters 𝐶(𝑘)
𝑢 and 𝐶(𝑘)

𝑣 .

Note that we usually only consider the distances between individual points, not sets
of points. Hence, 𝑑∗ must be a suitable extension of a pointwise distance 𝑑 (usually
the Euclideanmetric) to whole sets.

We will assume that 𝑑∗({𝐱𝑖,⋅}, {𝐱𝑗,⋅}) = 𝑑(𝐱𝑖,⋅, 𝐱𝑗,⋅), i.e., the distance between
singleton clusters is the same as the distance between the points themselves. As far
asmore populous point groups are concerned, there aremany popular choices of 𝑑∗

(which in the context of hierarchical clustering we call linkage functions):

• single linkage:

𝑑∗
S(𝐶(𝑘)

𝑢 , 𝐶(𝑘)
𝑣 ) = min

𝐱𝑖,⋅∈𝐶(𝑘)
𝑢 ,𝐱𝑗,⋅∈𝐶(𝑘)

𝑣

𝑑(𝐱𝑖,⋅, 𝐱𝑗,⋅),

• complete linkage:

𝑑∗
C(𝐶(𝑘)

𝑢 , 𝐶(𝑘)
𝑣 ) = max

𝐱𝑖,⋅∈𝐶(𝑘)
𝑢 ,𝐱𝑗,⋅∈𝐶(𝑘)

𝑣

𝑑(𝐱𝑖,⋅, 𝐱𝑗,⋅),

• average linkage:

𝑑∗
A(𝐶(𝑘)

𝑢 , 𝐶(𝑘)
𝑣 ) = 1

|𝐶(𝑘)
𝑢 ||𝐶(𝑘)

𝑣 |
∑

𝐱𝑖,⋅∈𝐶(𝑘)
𝑢

∑
𝐱𝑗,⋅∈𝐶(𝑘)

𝑣

𝑑(𝐱𝑖,⋅, 𝐱𝑗,⋅).

An illustration of the way different linkages are computed is given in Figure 7.12.

Assuming 𝑑∗
S, 𝑑∗

C or 𝑑∗
A in the aforementioned procedure leads to single, complete

or average linkage-based agglomerative hierarchical clustering algorithms, respect-
ively (referred to as single linkage etc. for brevity).
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single linkage complete linkage average linkage

Figure 7.12: In single linkage, we find the closest pair of points; in complete linkage,
we seek the pair furthest away fromeach other; in average linkage,we determine the
arithmetic mean of all pairwise distances

hs <- hclust(D, method="single")

hc <- hclust(D, method="complete")

ha <- hclust(D, method="average")

Figure 7.13 compares the 5-, 4- and 3-partitions obtained by applying the 3 above
linkages. Note that it’s in very nature of the single linkage algorithm that it’s highly
sensitive to outliers.

7.3.4 Cluster Dendrograms
A dendrogram (which we can plot by calling plot(h), where h is the result returned
by hclust()) depicts the distances (as defined by the linkage function) between the
clusters merged at every stage of the agglomerative procedure. This can provide us
with some insight into the underlying data structure as well as with hits about at
which level the tree could be cut.

Figure 7.14 depicts the three dendrograms that correspond to the clusterings ob-
tained by applying different linkages. Each tree has 150 leaves (at the bottom) that
represent the 150 points in our example dataset. Each “edge” (joint) represents a
group of points being merged. For instance, the very top joint in the middle sub-
figure is located at height of ≃ 6, which is exactly the maximal pairwise distance
(complete linkage) between the points in the last two last clusters.
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Figure 7.13: 3 cuts of 3 different hierarchies

7.4 Exercises in R
7.4.1 Clustering of theWorld Factbook
Let’s perform a cluster analysis of countries based on the information contained in
theWorld Factbook dataset:
factbook <- read.csv("datasets/world_factbook_2020.csv",

comment.char="#")

Exercise 7.2 Remove all the columns that consist of more than 40 missing values. Then re-
move all the rows with at least 1 missing value.
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Figure 7.14: Cluster dendrograms for the single, complete and average linkages

Solution.

To remove appropriate columns, wemust first count the number of NAs in them.
count_na_in_columns <- sapply(factbook, function(x) sum(is.na(x)))

factbook <- factbook[count_na_in_columns <= 40] # column removal

Getting rid of the rows plagued by missing values is as simple as calling the na.omit() func-
tion:
factbook <- na.omit(factbook) # row removal

dim(factbook) # how many rows and cols remained

## [1] 203 23
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Missing value removal is necessary for metric-based clustering methods, especially K-means.
Otherwise, some of the computed distances would be not available.

■
Exercise 7.3 Standardise all the numeric columns.

Solution.

Distance-based methods are very sensitive to the order of magnitude of the variables, and our
dataset is a mess with regards to this (population, GDP, birth rate, oil production etc.) – stand-
ardisation of variables is definitely a good idea:
for (i in 2:ncol(factbook)) # skip `country`

factbook[[i]] <- (factbook[[i]]-mean(factbook[[i]]))/

sd(factbook[[i]])

Recall that Z-scores (values of the standardised variables) have a very intuitive interpretation:
0 is the value equal to the columnmean, 1 is one standard deviation above themean,−2 is two
standard deviations below themean etc.

■
Exercise 7.4 Apply the 2-means algorithm, i.e., K-means with𝐾 = 2. Analyse the results.

Solution.

Calling kmeans():
km <- kmeans(factbook[-1], 2, nstart=10)

Let’s split the country list w.r.t. the obtained cluster labels. It turns out that the obtained parti-
tion is heavily imbalanced, so we’ll print only the contents of the first group:
km_countries <- split(factbook[[1]], km$cluster)

km_countries[[1]]

## [1] "China" "India" "United States"

With regards to which criteria has the K-means algorithm distinguished the countries? Let’s
inspect the cluster centres to check the average Z-scores of all the countries in each cluster:
t(km$centers) # transposed for readability

## 1 2

## area 3.661581 -0.0549237

## population 6.987279 -0.1048092

## median_age 0.477991 -0.0071699

## population_growth_rate -0.252774 0.0037916

## birth_rate -0.501030 0.0075155

## death_rate 0.153915 -0.0023087
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## net_migration_rate 0.236449 -0.0035467

## infant_mortality_rate -0.139577 0.0020937

## life_expectancy_at_birth 0.251541 -0.0037731

## total_fertility_rate -0.472716 0.0070907

## gdp_purchasing_power_parity 7.213681 -0.1082052

## gdp_real_growth_rate 0.369499 -0.0055425

## gdp_per_capita_ppp 0.298103 -0.0044715

## labor_force 6.914319 -0.1037148

## taxes_and_other_revenues -0.922735 0.0138410

## budget_surplus_or_deficit -0.012627 0.0001894

## inflation_rate_consumer_prices -0.096626 0.0014494

## exports 5.341178 -0.0801177

## imports 5.956538 -0.0893481

## telephones_fixed_lines 5.989858 -0.0898479

## internet_users 6.997126 -0.1049569

## airports 4.551832 -0.0682775

Countries in Cluster 2 are… average (Z-scores≃ 0). On the other hand, the three countries in
Cluster 1 dominate the others w.r.t. area, population, GDP PPP, labour force etc.

■
Exercise 7.5 Apply the complete linkage agglomerative hierarchical clustering algorithm.

Solution.

Recall that the complete linkage-basedmethod is implemented in the hclust() function:
d <- dist(factbook[-1]) # skip `country`

h <- hclust(d, method="complete")

A “nice” number of clusters to divide our dataset into can be read from the dendrogram, see Fig-
ure 7.15.
plot(h, labels=FALSE, ann=FALSE); box()

It seems that a 9-partition might reveal something interesting, because it will distinguish two
larger country groups. However, there will be many singletons if we do so either way.
y <- cutree(h, 9)

h_countries <- split(factbook[[1]], y)

sapply(h_countries, length) # number of elements in each cluster

## 1 2 3 4 5 6 7 8 9

## 138 56 1 1 3 1 1 1 1

Most likely this is not an interesting partitioning of this dataset, thereforewe’ll not be exploring
it any further.

■



Clustering 223

0
5

10
15

20
25

30

Figure 7.15: Cluster dendrogram for theWorld Factbook dataset –Complete linkage

Exercise 7.6 Apply the Genie clustering algorithm.

Solution.

TheGenie algorithm (Gagolewski et al. 2016) is a hierarchical clustering algorithm implemen-
ted in R package genieclust1. It’s interface is compatible with hclust().
library("genieclust")

d <- dist(factbook[-1])

g <- gclust(d)

The cluster dendrogram in Figure 7.16 reveals 3 evident clusters.
plot(g, labels=FALSE, ann=FALSE); box()

Let’s determine the 3-partition of the data set.
y <- cutree(g, 3)

Here are few countries in each cluster:
y <- cutree(g, 3)

sapply(split(factbook$countr, y), sample, 6)

## 1 2

## [1,] "Dominican Republic" "Congo, Republic of the"

## [2,] "Venezuela" "Sao Tome and Principe"

1https://genieclust.gagolewski.com/

https://genieclust.gagolewski.com/
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Figure 7.16: Cluster dendrogram for theWorld Factbook dataset – Genie algorithm

## [3,] "Sri Lanka" "Tanzania"

## [4,] "Malta" "Botswana"

## [5,] "China" "Congo, Democratic Republic of the"

## [6,] "Tajikistan" "Malawi"

## 3

## [1,] "Lithuania"

## [2,] "Portugal"

## [3,] "Korea, South"

## [4,] "Bulgaria"

## [5,] "Germany"

## [6,] "Moldova"

We can draw the countries in each cluster on a map by using the rworldmap package (see its
documentation for more details), see Figure 7.17.
library("rworldmap")

library("RColorBrewer")

mapdata <- data.frame(country=factbook$country, cluster=y)

# 3 country names must be adjusted to get a match

mapdata$country[mapdata$country == "Czechia"] <- "Czech Republic"

mapdata$country[mapdata$country == "Eswatini"] <- "Swaziland"

mapdata$country[mapdata$country == "Cabo Verde"] <- "Cape Verde"

mapdata <- joinCountryData2Map(mapdata, joinCode="NAME",

nameJoinColumn="country")

## 203 codes from your data successfully matched countries in the map
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## 0 codes from your data failed to match with a country code in the map

## 40 codes from the map weren't represented in your data

par(mar=c(0,0,0,0))

mapCountryData(mapdata, nameColumnToPlot="cluster",

catMethod="categorical", missingCountryCol="gray",

colourPalette=brewer.pal(3, "Set1"),

mapTitle="", addLegend=TRUE)

category
1
2
3

Figure 7.17: 3 clusters discovered by the Genie algorithm

Here are the average Z-scores in each cluster:
round(sapply(split(factbook[-1], y), colMeans), 3)

## 1 2 3

## area 0.124 -0.068 -0.243

## population 0.077 -0.058 -0.130

## median_age 0.118 -1.219 1.261

## population_growth_rate -0.227 1.052 -0.757

## birth_rate -0.316 1.370 -0.930

## death_rate -0.439 0.071 1.075

## net_migration_rate -0.123 0.053 0.260

## infant_mortality_rate -0.366 1.399 -0.835

## life_expectancy_at_birth 0.354 -1.356 0.812

## total_fertility_rate -0.363 1.332 -0.758

## gdp_purchasing_power_parity 0.084 -0.213 0.052

## gdp_real_growth_rate -0.062 0.126 0.002

## gdp_per_capita_ppp 0.021 -0.744 0.905
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## labor_force 0.087 -0.096 -0.107

## taxes_and_other_revenues -0.095 -0.584 1.006

## budget_surplus_or_deficit -0.113 -0.188 0.543

## inflation_rate_consumer_prices 0.044 -0.013 -0.099

## exports -0.013 -0.318 0.447

## imports 0.007 -0.308 0.379

## telephones_fixed_lines 0.048 -0.244 0.186

## internet_users 0.093 -0.178 -0.016

## airports 0.104 -0.131 -0.107

That is really interesting!The interpretation of the above is left to the reader.

■

7.4.2 UnbalanceDataset – K-MeansNeedsMultiple Starts
Let us consider a benchmark (artificial) dataset proposed in (Rezaei & Fränti 2016):
unbalance <- as.matrix(read.csv("datasets/sipu_unbalance.csv",

header=FALSE, sep=" ", comment.char="#"))

unbalance <- unbalance/10000-30 # a more user-friendly scale

According to its authors, this dataset is comprised of 8 clusters: there are 3 groups
on the lefthand side (2000 points each) and 5 on the right side (100 each).
plot(unbalance, asp=1)
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Figure 7.18: (#fig:sipu_unbalance2) sipu_unbalance dataset

Exercise 7.7 Apply the K-means algorithmwith𝐾 = 8.
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Solution.

Of course, here by “the” K-means we mean the default method available in the kmeans() func-
tion.The clustering results are depicted in Figure 7.19.
km <- kmeans(unbalance, 8, nstart=10)

plot(unbalance, asp=1, col=km$cluster)
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Figure 7.19: Results of K-means on the sipu_unbalance dataset

This is far fromwhat we expected.The total within-cluster distances are equal to:
km$tot.withinss

## [1] 21713

Increasing the number of restarts even further improves the solution, but the localminimum is
still far from the global one, compare Figure 7.20.
km <- suppressWarnings(kmeans(unbalance, 8, nstart=1000, iter.max=1000))

plot(unbalance, asp=1, col=km$cluster)

km$tot.withinss

## [1] 4378

■
Exercise 7.8 Apply the K-means algorithm starting from a “good” initial guess on the true
cluster centres.

Solution.
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Figure 7.20: Results ofK-meanson the sipu_unbalancedataset–manymore restarts

Clustering is – in its essence – an unsupervised learningmethod, so what we’re going to do now
could be called, let’s be blunt about it, cheating. Luckily, we have an oracle at our disposal – it
has provided us with the following educated guesses (by looking at the scatter plot) about the
localisation of the cluster centres:
cntr <- matrix(ncol=2, byrow=TRUE, c(

-15, 5,

-12, 10,

-10, 5,

15, 0,

15, 10,

20, 5,

25, 0,

25, 10))

Running kmeans() yields the clustering depicted in Figure 7.21.
km <- kmeans(unbalance, cntr)

plot(unbalance, asp=1, col=km$cluster)

The total within-cluster distances are now equal to:
km$tot.withinss

## [1] 2144.9

This is finally the globally optimal solution to the K-means problemwewere asked to solve. Re-
call that the algorithms implemented in the kmeans() function are just fast heuristics that are
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Figure 7.21: Results of K-means on the sipu_unbalance dataset – an educated guess
on the cluster centres’ locations

supposed to find local optima of the K-means objective function, which is given by the within-
cluster sum of squared Euclidean distances.

■

7.4.3 Clustering of Typical 2DBenchmarkDatasets
Let us consider a few clustering benchmark datasets available at https://github.com
/gagolews/clustering_benchmarks_v1 and http://cs.joensuu.fi/sipu/datasets/. Here
is a list of file names together with the corresponding numbers of clusters (as given
by datasets’ authors):
files <- c("datasets/wut_isolation.csv",

"datasets/wut_mk2.csv",

"datasets/wut_z3.csv",

"datasets/sipu_aggregation.csv",

"datasets/sipu_pathbased.csv",

"datasets/sipu_unbalance.csv")

Ks <- c(3, 2, 4, 7, 3, 8)

All the datasets are two-dimensional, hence we’ll be able to visualise the obtained
results and assess the sensibility of the obtained clusterings.

Exercise 7.9 Apply the K-means, the single, average and complete linkage and the Genie al-
gorithm on the aforementioned datasets and discuss the results.

https://github.com/gagolews/clustering_benchmarks_v1
https://github.com/gagolews/clustering_benchmarks_v1
http://cs.joensuu.fi/sipu/datasets/
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Solution.

Apart from a call to the Genie algorithm with the default parameters, we will also look at the
results it generates when we set giniThreshold of 0.5.

The following function is our workhorse that will perform all the computations and will draw
all the figures for a single dataset:
clusterise <- function(file, K) {

X <- read.csv(file,

header=FALSE, sep=" ", comment.char="#")

d <- dist(X)

par(mfrow=c(2, 3))

par(mar=c(0.5, 0.5, 2, 0.5))

y <- kmeans(X, K, nstart=10)$cluster

plot(X, asp=1, col=y, ann=FALSE, axes=FALSE)

mtext("K-means", line=0.5)

y <- cutree(hclust(d, "complete"), K)

plot(X, asp=1, col=y, ann=FALSE, axes=FALSE)

mtext("Complete Linkage", line=0.5)

y <- cutree(hclust(d, "average"), K)

plot(X, asp=1, col=y, ann=FALSE, axes=FALSE)

mtext("Average Linkage", line=0.5)

y <- cutree(hclust(d, "single"), K)

plot(X, asp=1, col=y, ann=FALSE, axes=FALSE)

mtext("Single Linkage", line=0.5)

y <- cutree(genieclust::gclust(d), K) # gini_threshold=0.3

plot(X, asp=1, col=y, ann=FALSE, axes=FALSE)

mtext("Genie (default)", line=0.5)

y <- cutree(genieclust::gclust(d, gini_threshold=0.5), K)

plot(X, asp=1, col=y, ann=FALSE, axes=FALSE)

mtext("Genie (g=0.5)", line=0.5)

}

Applying the above as clusterise(files[i], Ks[i]) yields Figures 7.22-7.27.

Note that, by definition, K-means is only able to detect clusters of convex shapes. The Genie al-
gorithm, on the other hand, might fail to detect clusters of very small sizes amongst the more
populous ones. Single linkage is very sensitive to outliers in data – it often outputs clusters of
cardinality 1.

■
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K-means Complete Linkage Average Linkage

Single Linkage Genie (default) Genie (g=0.5)

Figure 7.22: Clustering of the wut_isolation dataset

K-means Complete Linkage Average Linkage

Single Linkage Genie (default) Genie (g=0.5)

Figure 7.23: Clustering of the wut_mk2 dataset
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K-means Complete Linkage Average Linkage

Single Linkage Genie (default) Genie (g=0.5)

Figure 7.24: Clustering of the wut_z3 dataset

K-means Complete Linkage Average Linkage

Single Linkage Genie (default) Genie (g=0.5)

Figure 7.25: Clustering of the sipu_aggregation dataset
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K-means Complete Linkage Average Linkage

Single Linkage Genie (default) Genie (g=0.5)

Figure 7.26: Clustering of the sipu_pathbased dataset

K-means Complete Linkage Average Linkage

Single Linkage Genie (default) Genie (g=0.5)

Figure 7.27: Clustering of the sipu_unbalance dataset
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7.5 Outro
7.5.1 Remarks
Unsupervised learning is often performed during the data pre-processing and ex-
ploration stage. Assessing the quality of clustering is particularly challenging as, un-
like in a supervised setting, we have no access to “ground truth” information.

In practice, we often apply different clustering algorithms and just see where they
lead us.There’s no teacher thatwould tell uswhatwe should do, sowhateverwe do is
awesome, right?Well, not precisely. Most frequently, you,my dear reader, will work
for some party that’s genuinely interested in your explaining why did you spent the
lastmonth comingupwith nothinguseful at all.Thus, themain body ofwork related
to proving the use-full/less-ness will be on you.

Clusteringmethods can aid us in supervised tasks – instead of fitting a single “large
model”, it might be useful to fit separate models to each cluster.

To sumup, the aimof K-means is to find𝐾 clusters based on the notion of the points’
closeness to the cluster centres. Remember that 𝐾 must be set in advance. By defin-
ition (* via its relation to Voronoi diagrams), all clusters will be of convex shapes.

However, we may try applying 𝐾′-means for 𝐾′ ≫ 𝐾 to obtain a “fine grained” com-
pressed representation of data and then combine the (sub)clusters into more mean-
ingful groups using other methods (such as the hierarchical ones).

Iterative K-means algorithms are very fast (e.g., a mini-batch version of the al-
gorithm can be implement to speed up the optimisation process) even for large data
sets, but they may fail to find a desirable solution, especially if clusters are unbal-
anced.

Hierarchical methods, on the other hand, output a whole family of mutually nested
partitions, which may provide us with insight into the underlying structure of data
data. Unfortunately, there is no easy way to assign new points to existing clusters;
yet, you can always build a classifier (e.g., a decision tree or a neural network) that
learns the discovered labels.

A linkage schememust be chosen with care, for instance, single linkage can be sens-
itive to outliers. However, it is generally the fastest. The methods implemented in
hclust() are generally slow; they have time complexity between𝑂(𝑛2) and𝑂(𝑛3).

Remark. Note that the fastcluster package provides amore efficient andmemory-
saving implementation of some methods available via a call to hclust(). See also
the genieclust package for a super-robust version of the single linkage algorithm
based on the datasets’s Euclidean minimum spanning tree, which can be com-
puted quite quickly.



Clustering 235

Finally, note that all thediscussed clusteringmethodsarebasedon thenotionofpair-
wise distances. These of course tend to behave weirdly in high-dimensional spaces
(“the curse of dimensionality”).Moreover, somehardcore feature engineeringmight
be needed to obtain meaningful results.

7.5.2 Further Reading
Recommended further reading: (James et al. 2017: Section 10.3)

Other: (Hastie et al. 2017: Section 14.3)

Additionally, check out other noteworthy clustering approaches:

• Genie (seeRpackage genieclust) (Gagolewski et al. 2016, Cena&Gagolewski 2020)
• ITM (Müller et al. 2012)
• DBSCAN, HDBSCAN* (Ling 1973, Ester et al. 1996, Campello et al. 2015)
• K-medoids, K-medians
• Fuzzy C-means (a.k.a. weighted K-means) (Bezdek et al. 1984)
• Spectral clustering; e.g., (Ng et al. 2001)
• BIRCH (Zhang et al. 1996)





8
Optimisation with Genetic Algorithms (*)

These lecture notes are distributed in the hope that theywill be useful.
Any bug reports are appreciated.

8.1 Introduction
8.1.1 Recap

Recall that an optimisation task deals with finding an element 𝐱 in a search space
𝔻, that minimises or maximises an objective function 𝑓 ∶ 𝔻 → ℝ:

min
𝐱∈𝔻

𝑓 (𝐱) or max
𝐱∈𝔻

𝑓 (𝐱),

In one of the previous chapters, we were dealing with unconstrained continuous
optimisation, i.e., we assumed the search space is𝔻 = ℝ𝑝 for some 𝑝.

Example problems of this kind:minimisingmean squared error in linear regression
or minimising cross-entropy in logistic regression.

Theclass of general-purpose iterative algorithmswe’vepreviously studiedfit into the
following scheme:

1. 𝐱(0) – initial guess (e.g., generated at random)

2. for 𝑖 = 1, ..., 𝑀:

a. 𝐱(𝑖) = 𝐱(𝑖−1) + [guessed direction, e.g.,− 𝜂∇𝑓 (𝐱)]

237



238 LightweightMachine Learning Classics with R

b. if |𝑓 (𝐱(𝑖)) − 𝑓 (𝐱(𝑖−1))| < 𝜀 break

3. return 𝐱(𝑖) as result

where:

• 𝑀 =maximum number of iterations
• 𝜀 = tolerance, e.g, 10−8

• 𝜂 > 0 = learning rate

The algorithms such as gradient descent and BFGS (see optim()) give satisfactory
results in the case of smooth andwell-behaving objective functions.

However, if an objective has, e.g., many plateaus (regions where it is almost con-
stant), those methods might easily get stuck in local minima.

The K-means clustering’s objective function is a not particularly pleasant one – it
involves a nested search for the closest cluster, with the use of the min operator.

8.1.2 K-means Revisited

In K-means clustering we are minimising the squared Euclidean distance to each
point’s cluster centre:

min
𝝁1,⋅,…,𝝁𝐾,⋅∈ℝ𝑝

𝑛
∑
𝑖=1

⎛⎜⎜
⎝
min

𝑘=1,…,𝐾

𝑝
∑
𝑗=1

(𝑥𝑖,𝑗 − 𝜇𝑘,𝑗)
2⎞⎟⎟
⎠

.

This is an (NP-)hard problem!There is no efficient exact algorithm.

We need approximations. In the last chapter, we have discussed the iterative Lloyd’s
algorithm (1957), which is amongst a few procedures implemented in the kmeans()
function.

To recall, Lloyd’s algorithm (1957) is sometimes referred to as “the” K-means al-
gorithm:

1. Start with random cluster centres𝝁1,⋅, … , 𝝁𝐾,⋅.

2. For each point 𝐱𝑖,⋅, determine its closest centre 𝐶(𝑖) ∈ {1, … , 𝐾}.

3. For each cluster 𝑘 ∈ {1, … , 𝐾}, compute the new cluster centre 𝝁𝑘,⋅ as
the componentwise arithmetic mean of the coordinates of all the point
indices 𝑖 such that 𝐶(𝑖) = 𝑘.

4. If the cluster centres changed since last iteration, go to step 2, otherwise
stop and return the result.
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As the procedure might get stuck in a local minimum, a few restarts are recommen-
ded (as usual).

Hence, we are used to calling:
kmeans(X, centers=k, nstart=10)

8.1.3 optim() vs. kmeans()

Let us compare how a general-purpose optimiser such as the BFGS algorithm imple-
mented in optim() compares with a customised, problem-specific solver.

We will need some benchmark data.
gen_cluster <- function(n, p, m, s) {

vectors <- matrix(rnorm(n*p), nrow=n, ncol=p)

unit_vectors <- vectors/sqrt(rowSums(vectors^2))

unit_vectors*rnorm(n, 0, s)+rep(m, each=n)

}

Theabove function generates 𝑛 points inℝ𝑝 from a distribution centred at𝐦 ∈ ℝ𝑝,
spread randomly in every possible direction with scale factor 𝑠.

Two example clusters inℝ2:
# plot the "black" cluster

plot(gen_cluster(500, 2, c(0, 0), 1), col="#00000022", pch=16,

xlim=c(-3, 4), ylim=c(-3, 4), asp=1, ann=FALSE)

# plot the "red" cluster

points(gen_cluster(250, 2, c(1.5, 1), 0.5), col="#ff000022", pch=16)

Let’s generate the benchmark dataset 𝐗 that consists of three clusters in a high-
dimensional space.
set.seed(123)

p <- 32

Ns <- c(50, 100, 20)

Ms <- c(0, 1, 2)

s <- 1.5*p

K <- length(Ns)

X <- lapply(1:K, function(k)

gen_cluster(Ns[k], p, rep(Ms[k], p), s))

X <- do.call(rbind, X) # rbind(X[[1]], X[[2]], X[[3]])
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Figure 8.1: (#fig:gendata_example) plot of chunk gendata_example

The objective function for the K-means clustering problem:
library("FNN")

get_loss <- function(mu, X) {

# For each point in X,

# get the index of the closest point in mu:

memb <- FNN::get.knnx(mu, X, 1)$nn.index

# compute the sum of squared distances

# between each point and its closes cluster centre:

sum((X-mu[memb,])^2)

}

Setting up the solvers:
min_HartiganWong <- function(mu0, X)

get_loss(

# algorithm="Hartigan-Wong"

kmeans(X, mu0, iter.max=100)$centers,

X)

min_Lloyd <- function(mu0, X)

get_loss(

kmeans(X, mu0, iter.max=100, algorithm="Lloyd")$centers,

X)

min_optim <- function(mu0, X)

optim(mu0,
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function(mu, X) {

get_loss(matrix(mu, nrow=nrow(mu0)), X)

}, X=X, method="BFGS", control=list(reltol=1e-16)

)$val

Running the simulation:
nstart <- 100

set.seed(123)

res <- replicate(nstart, {

mu0 <- X[sample(nrow(X), K),]

c(

HartiganWong=min_HartiganWong(mu0, X),

Lloyd=min_Lloyd(mu0, X),

optim=min_optim(mu0, X)

)

})

Notice a considerable variability of the objective function at the local minima found:
boxplot(as.data.frame(t(res)), horizontal=TRUE, col="white")
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Figure 8.2: plot of chunk gendata5

print(apply(res, 1, function(x)

c(summary(x), sd=sd(x))

))
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## HartiganWong Lloyd optim

## Min. 421889 425119.5 422989

## 1st Qu. 424663 433669.3 432446

## Median 427129 438502.2 440033

## Mean 426557 438075.0 440635

## 3rd Qu. 428243 441381.3 446614

## Max. 431869 450469.7 466303

## sd 2301 5709.3 10888

Of course, we are interested in the smallest value of the objective, because we’re try-
ing to pinpoint the global minimum.
print(apply(res, 1, min))

## HartiganWong Lloyd optim

## 421889 425119 422989

TheHartigan-Wong algorithm (the default one in kmeans()) is the most reliable one
of the three:

• it gives the best solution (low bias)
• the solutions have the lowest degree of variability (low variance)
• it is the fastest:

library("microbenchmark")

set.seed(123)

mu0 <- X[sample(nrow(X), K),]

summary(microbenchmark(

HartiganWong=min_HartiganWong(mu0, X),

Lloyd=min_Lloyd(mu0, X),

optim=min_optim(mu0, X),

times=10

), unit="relative")

## expr min lq mean median uq

## 1 HartiganWong 1.0914 1.1464 1.1718 1.1764 1.2848

## 2 Lloyd 1.0000 1.0000 1.0000 1.0000 1.0000

## 3 optim 1611.1920 1606.1912 1537.1444 1591.3588 1570.4874

## max neval

## 1 1.1449 10

## 2 1.0000 10

## 3 1316.5149 10

print(min(res))

## [1] 421889



Optimisation with Genetic Algorithms (*) 243

Is it the global minimum?

We don’t know, we just didn’t happen to find anything better (yet).

Did we put enough effort to find it?

Well, maybe.We can try more random restarts:

res_tried_very_hard <- kmeans(X, K, nstart=100000, iter.max=10000)$centers

print(get_loss(res_tried_very_hard, X))

## [1] 421889

Is it good enough?

It depends what we’d like to do with this. Does it make your boss
happy? Does it generate revenue? Does it help solve any other prob-
lem? Is it useful anyhow? Are you really looking for the global min-
imum?

8.2 Genetic Algorithms
8.2.1 Introduction

What if our optimisation problem cannot be solved reliably with gradient-based
methods like those in optim() and we don’t have any custom solver for the task at
hand?
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There are a couple of usefulmetaheuristics in the literature that can serve this purpose.

Most of them rely on clever randomised search.

They are slow to run and don’t guarantee anything, but yet they still might be useful
– some claim that a solution is better than no solution at all.

There is a wide class of nature-inspired algorithms (that traditionally belong to the
subfield of AI called computational intelligence or soft computing); see, e.g, (Simon 2013):

• evolutionary algorithms – inspired by the principle of natural selection

maintain a population of candidate solutions, let the “fittest” com-
bine with each other to generate new “offspring” solutions.

• swarm algorithms

maintain a herd of candidate solutions, allow them to “explore” the
environment, “communicate” with each other in order to seek the
best spot to “go to”.

For example:

– ant colony
– bees
– cuckoo search
– particle swarm
– krill herd

• other metaheuristics:

– harmony search
– memetic algorithm
– firefly algorithm

All of these sound fancy, but the general ideas behind them are pretty simple.
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8.2.2 Overview of theMethod

Genetic algorithms (GAs) are amongst the most popular evolutionary approaches.

They are based on Charles Darwin’s work on evolution by natural selection; first pro-
posed by John Holland in the 1960s.

See (Goldberg, 1989) for a comprehensive overview and (Simon, 2013) for extensions.

Here is the general idea of a GA (there might be many) to minimise a given object-
ive/loss function 𝑓 over a given domain𝐷.

1. Generate a random initial population of individuals – 𝑛pop points in 𝐷,
e.g., 𝑛pop = 32

2. Repeat until some convergence criterion is not met:

a. evaluate the fitness of each individual (the smaller the loss, the
greater its fitness)

b. select the pairs of the individuals for reproduction, the fitter should
be selected more eagerly

c. apply crossover operations to create offspring
d. slightly mutate randomly selected individuals
e. replace the old population with the new one

8.2.3 Example Implementation - GA for K-means

Initial setup:
set.seed(123)

# simulation parameters:

npop <- 32

niter <- 100

# randomly generate an initial population of size `npop`:

pop <- lapply(1:npop, function(i) X[sample(nrow(X), K),])

# evaluate loss for each individual:

cur_loss <- sapply(pop, get_loss, X)

cur_best_loss <- min(cur_loss)

best_loss <- cur_best_loss

Each individual in the population is just the set of 𝐾 candidate cluster centres rep-
resented as a matrix inℝ𝐾×𝑝.
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Let’s assume that the loss for each individual should be a function of the rank of the
objective function’s value (smallest objective/loss == highest rank/utility/fitness ==
best fit).

For the crossover, we will sample pairs of individuals with probabilities inversely
proportional to their losses.
selection <- function(cur_loss) {

npop <- length(cur_loss)

probs <- rank(-cur_loss)

probs <- probs/sum(probs)

left <- sample(npop, npop, replace=TRUE, prob=probs)

right <- sample(npop, npop, replace=TRUE, prob=probs)

cbind(left, right)

}

An example crossover combines each cluster centre in such a way that we take a few
coordinates of the “left” parent and the remaining ones from the “right” parent:

LEFT PARENT RIGHT PARENT

CHILD

CROSSOVER

Figure 8.3: Crossover

crossover <- function(pop, pairs, K, p) {

old_pop <- pop

pop <- pop[pairs[,2]]

for (j in 1:length(pop)) {

wh <- sample(p-1, K, replace=TRUE)

for (l in 1:K)

pop[[j]][l,1:wh[l]] <-

old_pop[[pairs[j,1]]][l,1:wh[l]]

}

pop

}
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Mutation (occurring with a very small probability) substitutes some cluster centre
with a random vector from the input dataset.
mutate <- function(pop, X, K) {

for (j in 1:length(pop)) {

if (runif(1) < 0.025) {

szw <- sample(1:K, 1)

pop[[j]][szw,] <- X[sample(nrow(X), length(szw)),]

}

}

pop

}

Wealsoneeda function that checks if thenewcluster centres aren’t too far away from
the input points.

If it happens that we have empty clusters, our solution is degenerate and we must
correct it.

All “bad” cluster centres will be substituted with randomly chosen points from𝐗.
Moreover, we will recompute the cluster centres as the componentwise arithmetic
mean of the closest points, just like in Lloyd’s algorithm, to speed up convergence.

recompute_mus <- function(pop, X, K) {

for (j in 1:length(pop)) {

# get nearest cluster centres for each point:

memb <- get.knnx(pop[[j]], X, 1)$nn.index

sz <- tabulate(memb, K) # number of points in each cluster

# if there are empty clusters, fix them:

szw <- which(sz==0)

if (length(szw)>0) { # random points in X will be new cluster centres

pop[[j]][szw,] <- X[sample(nrow(X), length(szw)),]

memb <- FNN::get.knnx(pop[[j]], X, 1)$nn.index

sz <- tabulate(memb, K)

}

# recompute cluster centres - componentwise average:

pop[[j]][,] <- 0

for (l in 1:nrow(X))

pop[[j]][memb[l],] <- pop[[j]][memb[l],]+X[l,]

pop[[j]] <- pop[[j]]/sz

}

pop

}

Weare ready to build our genetic algorithm to solve theK-means clustering problem:
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for (i in 1:niter) {

pairs <- selection(cur_loss)

pop <- crossover(pop, pairs, K, p)

pop <- mutate(pop, X, K)

pop <- recompute_mus(pop, X, K)

# re-evaluate losses:

cur_loss <- sapply(pop, get_loss, X)

cur_best_loss <- min(cur_loss)

# give feedback on what's going on:

if (cur_best_loss < best_loss) {

best_loss <- cur_best_loss

best_mu <- pop[[which.min(cur_loss)]]

cat(sprintf("%5d: f_best=%10.5f\n", i, best_loss))

}

}

## 1: f_best=435638.52165

## 2: f_best=428808.89706

## 4: f_best=428438.45125

## 6: f_best=422277.99136

## 8: f_best=421889.46265

print(get_loss(best_mu, X))

## [1] 421889

print(get_loss(res_tried_very_hard, X))

## [1] 421889

It works! :)

8.3 Outro
8.3.1 Remarks

For any 𝑝 ≥ 1, the search space type determines the problem class:

• 𝔻 ⊆ ℝ𝑝 – continuous optimisation

In particular:

– 𝔻 = ℝ𝑝 – continuous unconstrained

– 𝔻 = [𝑎1, 𝑏1] × ⋯ × [𝑎𝑛, 𝑏𝑛] – continuous with box constraints
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– constrained with 𝑘 linear inequality constraints

⎧{
⎨{⎩

𝑎1,1𝑥1 + ⋯ + 𝑎1,𝑝𝑥𝑝 ≤ 𝑏1
⋮

𝑎𝑘,1𝑥1 + ⋯ + 𝑎𝑘,𝑝𝑥𝑝 ≤ 𝑏𝑘

However, there are other possibilities as well:

• 𝔻 ⊆ ℤ𝑝 (ℤ – the set of integers) – discrete optimisation

In particular:

– 𝔻 = {0, 1}𝑝 – 0–1 optimisation (hard!)

• 𝔻 is finite (but perhaps large, its objects can be enumerated) – combination op-
timisation

For example:

– 𝔻 = all possible routes between two points on a map.

These optimisation tasks tend to bemuchharder than the continuous
ones.

Genetic algorithmsmight come in handy in such cases.

Specialisedmethods, customised to solve a specific problem (like Lloyd’s algorithm)
will often outperform generic ones (like SGD, genetic algorithms) in terms of speed
and reliability.

All in all, we prefer a suboptimal solution obtained bymeans of heuristics to no solu-
tion at all.

Problems that you could try solving with GAs include variable selection in multiple
regression–finding the subset of features optimising theAIC (this is a hardproblem
to and forward selection was just a simple greed heuristic).

Other interesting algorithms:

• Hill Climbing (a simple variation of GDwith no gradient use)
• Simulated annealing
• CMA-ES
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• Tabu search
• Particle swarm optimisation (e.g, hydroPSO package)
• Artificial bee/ant colony optimisation
• Cuckoo Search
• Differential Evolution (e.g., DEoptim package)

8.3.2 Further Reading

Recommended further reading:

• (Goldberg 1989)

Other:

• (Simon 2013)

See also package GA.



9
Recommender Systems (*)

These lecture notes are distributed in the hope that theywill be useful.
Any bug reports are appreciated.

9.1 Introduction
Recommender (recommendation) systems aim to predict the rating a user would give to
an item.

For example:

• playlist generators (Spotify, YouTube, Netflix, …),
• content recommendations (Facebook, Instagram, Twitter, Apple News, …),
• product recommendations (Amazon, Alibaba, …).

Implementing recommender systems, according to (Ricci et al. 2011), might:

• increase the number of items sold,
• increase users’ satisfaction,
• increase users’ fidelity,
• allow a company to sell more diverse items,
• allow to better understand what users want.

Exercise 9.1 Think of the last time you found some recommendation useful.

They can also increase the users’ frustration.

Exercise 9.2 Thinkof the last time you founda recommendationuseless and irritating.What
might be the reasons why you have been provided with such a suggestion?

251
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9.1.1 TheNetflix Prize
In 2006 Netflix (back then a DVD rental company) released one of the most famous
benchmark sets for recommender systems, which helped boost the research on al-
gorithms in this field.

See https://www.kaggle.com/netflix-inc/netflix-prize-data; data archived at
https://web.archive.org/web/20090925184737/http://archive.ics.uci.edu/ml/datas
ets/Netflix+Prize and https://archive.org/details/nf_prize_dataset.tar

The dataset consists of:

• 480,189 users
• 17,770 movies
• 100,480,507 ratings in the training sample:

– MovieID

– CustomerID

– Rating from 1 to 5
– Title

– YearOfRelease from 1890 to 2005
– Date of rating in the range 1998-11-01 to 2005-12-31

The quiz set consists of 1,408,342 ratings and it was used by the competitors to assess
the quality of their algorithms and compute the leaderboard scores.

Rootmean squared error (RMSE) of predicted vs. true rankings was chosen as a per-
formance metric.

The test set of 1,408,789 ratings (not make publicly available) was used to determine
the winner.

On 21 September 2009, the grand prize of US$1,000,000 was given to the BellKor’s
Pragmatic Chaos team which improved over the Netflix’s Cinematch algorithm by
10.06%, achieving the winning RMSE of 0.8567 on the test subset.

9.1.2 Main Approaches
Current recommender systems are quite complex and use a fusion of various ap-
proaches, also those based on external knowledge bases.

However, we may distinguish at least two core approaches, see (Ricci et al. 2011) for
more:

• Collaborative Filtering is based on the assumption that if two people interact with
the same product, they’re likely to have other interests in common as well.

John and Mary both like bananas and apples and dislike spinach.

https://www.kaggle.com/netflix-inc/netflix-prize-data
https://web.archive.org/web/20090925184737/http://archive.ics.uci.edu/ml/datasets/Netflix+Prize
https://web.archive.org/web/20090925184737/http://archive.ics.uci.edu/ml/datasets/Netflix+Prize
https://archive.org/details/nf_prize_dataset.tar
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John likes sushi. Mary hasn’t tried sushi yet. It seems they might
have similar tastes, so we recommend that Mary should give sushi
a try.

• Content-based Filtering builds users’ profiles that represent information about what
kind of products they like.

We have discovered that John likes fruit but dislikes vegetables. An
orange is a fruit (an item similar to those he liked in the past) with
which John is yet to interact. Thus, it is suggested that John should
give it a try.

Jim Bennett, at that time the vice president of recommendation systems at Netflix
on the idea behind the original Cinematch algorithm (see https://www.technology
review.com/s/406637/the-1-million-netflix-challenge/ and https://web.archive.or
g/web/20070821194257/http://www.netflixprize.com/faq):

First, you collect 100 million user ratings for about 18,000 movies.
Take any two movies and find the people who have rated both of
them.Then look to see if the peoplewho rate one of themovies highly
rate the other one highly, if they liked one and not the other, or if
they didn’t like either movie. Based on their ratings, Cinematch sees
whether there’s a correlation between those people. Now, do this for
all possible pairs of 65,000movies.

Exercise 9.3 Is the above an example of the collaborative or context-based filtering?

9.1.3 Formalism
Let 𝒰 = {𝑈1, … , 𝑈𝑛} denote the set of 𝑛 users.

Let ℐ = {𝐼1, … , 𝐼𝑝} denote the set of 𝑝 items.

https://www.technologyreview.com/s/406637/the-1-million-netflix-challenge/
https://www.technologyreview.com/s/406637/the-1-million-netflix-challenge/
https://web.archive.org/web/20070821194257/http://www.netflixprize.com/faq
https://web.archive.org/web/20070821194257/http://www.netflixprize.com/faq
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Let𝐑 ∈ ℝ𝑛×𝑝 be a user-itemmatrix such that:

𝑟𝑢,𝑖 = { 𝑟 if the 𝑢-th user ranked the 𝑖-th item as 𝑟 > 0
0 if the 𝑢-th user hasn’t interacted with the 𝑖-th item yet

Remark. Note that 0 is used to denote a missing value (NA) here.

In particular, we can assume:

• 𝑟𝑢,𝑖 ∈ {0, 1, … , 5} (ratings on the scale 1–5 or no interaction)
• 𝑟𝑢,𝑖 ∈ {0, 1} (“Like” or no interaction)

The aim of an recommender system is to predict the rating ̂𝑟𝑢,𝑖 that the 𝑢-th user
would give to the 𝑖-th item provided that currently 𝑟𝑢,𝑖 = 0.

9.2 Collaborative Filtering
9.2.1 Example

. Apple Banana Sushi Spinach Orange

Anne 1 5 5 1
Beth 1 1 5 5 1
John 5 5 1
Kate 1 1 5 5 1
Mark 5 5 1 1 5
Sara ? 5 ? 5

In user-based collaborative filtering, we seek users with similar preference pro-
files/rating patters.

“User A has similar behavioural patterns as user B, so A should sug-
gested with what B likes.”

In item-based collaborative filtering, we seek items with similar (dis)likeability
structure.
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“Users who (dis)liked X also (dis)liked Y”.

Exercise 9.4 Will Sara enjoy her spinach?Will Sara enjoy her apple?

An example𝐑matrix in R:
R <- matrix(

c(

1, 5, 5, 0, 1,

1, 1, 5, 5, 1,

5, 5, 0, 1, 0,

1, 1, 5, 5, 1,

5, 5, 1, 1, 5,

0, 5, 0, 0, 5

), byrow=TRUE, nrow=6, ncol=5,

dimnames=list(

c("Anne", "Beth", "John", "Kate", "Mark", "Sara"),

c("Apple", "Banana", "Sushi", "Spinach", "Orange")

)

)

R

## Apple Banana Sushi Spinach Orange

## Anne 1 5 5 0 1

## Beth 1 1 5 5 1

## John 5 5 0 1 0

## Kate 1 1 5 5 1

## Mark 5 5 1 1 5

## Sara 0 5 0 0 5

9.2.2 SimilarityMeasures
Assuming 𝐚,𝐛 are two sequences of length 𝑘 (in our setting, 𝑘 is equal to either 𝑛 or
𝑝), let 𝑆 be the following similarity measure between two rating vectors:

𝑆(𝐚,𝐛) =
∑𝑘

𝑖=1 𝑎𝑖𝑏𝑖

√∑𝑘
𝑖=1 𝑎2

𝑖
√∑𝑘

𝑖=1 𝑏2
𝑖

cosim <- function(a, b) sum(a*b)/sqrt(sum(a^2)*sum(b^2))

We call it the cosine similarity. We have 𝑆(𝐚,𝐛) ∈ [−1, 1], where we get 1 for two
identical elements. Similarity of 0 is obtained for two unrelated (“orthogonal”) vec-
tors. For nonnegative sequences, negative similarities are not generated.
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(*) Another frequently considered similarity measure is a version of
the Pearson correlation coefficient that ignores all 0-valued observa-
tions, see also the use argument to the cor() function.

9.2.3 User-Based Collaborative Filtering
User-based approaches involve comparing each user against every other user (pair-
wise comparisons of the rows in𝐑). This yields a similarity degree between the 𝑖-th
and the 𝑗-th user:

𝑠𝑈
𝑖,𝑗 = 𝑆(𝐫𝑖,⋅, 𝐫𝑗,⋅).

SU <- matrix(0, nrow=nrow(R), ncol=nrow(R),

dimnames=dimnames(R)[c(1,1)]) # and empty n*n matrix

for (i in 1:nrow(R)) {

for (j in 1:nrow(R)) {

SU[i,j] <- cosim(R[i,], R[j,])

}

}

round(SU, 2)

## Anne Beth John Kate Mark Sara

## Anne 1.00 0.61 0.58 0.61 0.63 0.59

## Beth 0.61 1.00 0.29 1.00 0.39 0.19

## John 0.58 0.29 1.00 0.29 0.81 0.50

## Kate 0.61 1.00 0.29 1.00 0.39 0.19

## Mark 0.63 0.39 0.81 0.39 1.00 0.81

## Sara 0.59 0.19 0.50 0.19 0.81 1.00

In order to obtain the previously unobserved rating ̂𝑟𝑢,𝑖 using the user-based ap-
proach, we typically look for the 𝐾 most similar users and aggregate their corres-
ponding scores (for some 𝐾 ≥ 1).

More formally, let {𝑈𝑣1
, … , 𝑈𝑣𝐾

} ∈ 𝒰 � {𝑈𝑢} be the set of users maximising
𝑠𝑈
𝑢,𝑣1

, … , 𝑠𝑈
𝑢,𝑣𝐾

and having 𝑟𝑣1,𝑖, … , 𝑟𝑣𝐾 ,𝑖 > 0. Then:

̂𝑟𝑢,𝑖 = 1
𝐾

𝐾
∑
ℓ=1

𝑟𝑣ℓ,𝑖.

Remark. The arithmetic mean can be replaced with, e.g., the more or a weighted
arithmetic mean where weights are proportional to 𝑠𝑈

𝑢,𝑣ℓ
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This is very similar to the 𝐾-nearest neighbour heuristic!
K <- 2

(sim <- order(SU["Sara",], decreasing=TRUE))

## [1] 6 5 1 3 2 4

# sim gives the indices of people in decreasing order

# of similarity to Sara:

dimnames(R)[[1]][sim] # the corresponding names

## [1] "Sara" "Mark" "Anne" "John" "Beth" "Kate"

# Remove those who haven't tried Spinach yet (including Sara):

sim <- sim[ R[sim, "Spinach"]>0 ]

dimnames(R)[[1]][sim]

## [1] "Mark" "John" "Beth" "Kate"

# aggregate the Spinach ratings of the K most similar people:

mean(R[sim[1:K], "Spinach"])

## [1] 1

9.2.4 Item-Based Collaborative Filtering
Item-based schemes rely on pairwise comparisons between the items (columns in
𝐑). Hence, a similarity degree between the 𝑖-th and the 𝑗-th item is given by:

𝑠𝐼
𝑖,𝑗 = 𝑆(𝐫⋅,𝑖, 𝐫⋅,𝑗).

SI <- matrix(0, nrow=ncol(R), ncol=ncol(R),

dimnames=dimnames(R)[c(2,2)]) # an empty p*p matrix

for (i in 1:ncol(R)) {

for (j in 1:ncol(R)) {

SI[i,j] <- cosim(R[,i], R[,j])

}

}

round(SI, 2)

## Apple Banana Sushi Spinach Orange

## Apple 1.00 0.78 0.32 0.38 0.53

## Banana 0.78 1.00 0.45 0.27 0.78

## Sushi 0.32 0.45 1.00 0.81 0.32

## Spinach 0.38 0.27 0.81 1.00 0.29

## Orange 0.53 0.78 0.32 0.29 1.00

In order to obtain the previously unobserved rating ̂𝑟𝑢,𝑖 using the item-based ap-
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proach, we typically look for the 𝐾 most similar items and aggregate their corres-
ponding scores (for some 𝐾 ≥ 1)

More formally, let {𝐼𝑗1 , … , 𝐼𝑗𝐾 } ∈ ℐ � {𝐼𝑖} be the set of itemsmaximising 𝑠𝐼
𝑖,𝑗1 , … , 𝑠𝐼

𝑖,𝑗𝐾
and having 𝑟𝑢,𝑗1 , … , 𝑟𝑢,𝑗𝐾 > 0. Then:

̂𝑟𝑢,𝑖 = 1
𝐾

𝐾
∑
ℓ=1

𝑟𝑢,𝑗ℓ .

Remark. Similarly to the previous case, the arithmetic mean can be replaced with,
e.g., the mode or a weighted arithmetic mean where weights are proportional to
𝑠𝐼
𝑖,𝑗ℓ .

K <- 2

(sim <- order(SI["Apple",], decreasing=TRUE))

## [1] 1 2 5 4 3

# sim gives the indices of items in decreasing order

# of similarity to Apple:

dimnames(R)[[2]][sim] # the corresponding item types

## [1] "Apple" "Banana" "Orange" "Spinach" "Sushi"

# Remove these which Sara haven't tried yet (e.g., Apples):

sim <- sim[ R["Sara", sim]>0 ]

dimnames(R)[[2]][sim]

## [1] "Banana" "Orange"

# aggregate Sara's ratings of the K most similar items:

mean(R["Sara", sim[1:K]])

## [1] 5

9.3 Exercise:TheMovieLensDataset (*)
9.3.1 Dataset
Let’s make a few recommendations based on the MovieLens-9/2018-Small dataset
available at https://grouplens.org/datasets/movielens/latest/, see also https:
//movielens.org/ and (Harper & Konstan 2015).

The dataset consists of ca. 100,000 ratings to 9,000 movies by 600 users. It was last
updated on September 2018.

https://grouplens.org/datasets/movielens/latest/
https://movielens.org/
https://movielens.org/
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This is already a pretty large dataset! We might run into problems with memory us-
age and high run-time.
movies <- read.csv("datasets/ml-9-2018-small/movies.csv",

comment.char="#")

head(movies, 4)

## movieId title

## 1 1 Toy Story (1995)

## 2 2 Jumanji (1995)

## 3 3 Grumpier Old Men (1995)

## 4 4 Waiting to Exhale (1995)

## genres

## 1 Adventure|Animation|Children|Comedy|Fantasy

## 2 Adventure|Children|Fantasy

## 3 Comedy|Romance

## 4 Comedy|Drama|Romance

nrow(movies)

## [1] 9742

ratings <- read.csv("datasets/ml-9-2018-small/ratings.csv",

comment.char="#")

head(ratings, 4)

## userId movieId rating timestamp

## 1 1 1 4 964982703

## 2 1 3 4 964981247

## 3 1 6 4 964982224

## 4 1 47 5 964983815

nrow(ratings)

## [1] 100836

table(ratings$rating)

##

## 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

## 1370 2811 1791 7551 5550 20047 13136 26818 8551 13211

9.3.2 Data Cleansing
movieIds should be re-encoded, as not every film ismentioned/rated in the database.
We will re-map the movieIds to consecutive integers.
# the list of all rated movieIds:

movieId2 <- unique(ratings$movieId)
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# max user Id (these could've been cleaned up too):

(n <- max(ratings$userId))

## [1] 610

# number of unique movies:

(p <- length(movieId2))

## [1] 9724

# remove unrated movies:

movies <- movies[movies$movieId %in% movieId2, ]

# we'll map movieId2[i] to i for each i=1,...,p:

movies$movieId <- match(movies$movieId, movieId2)

ratings$movieId <- match(ratings$movieId, movieId2)

# order the movies by the new movieId so that

# the movie with Id==i is in the i-th row:

movies <- movies[order(movies$movieId),]

stopifnot(all(movies$movieId == 1:p)) # sanity check

We will use a sparse matrix data type (from R package Matrix) to store the ratings
data,𝐑 ∈ ℝ𝑛×𝑝.

Remark. Sparse matrices contain many zeros. Instead of storing all the 𝑛𝑝 =
5931640 elements, only the lists of non-zero ones are saved, 100836 values in total.
This way, we might save a lot of memory. The drawback is that, amongst others,
random access to the elements in a sparse matrix takes more time.

library("Matrix")

R <- Matrix(0.0, sparse=TRUE, nrow=n, ncol=p)

# This is a vectorised operation;

# it is faster than a for loop over each row

# in the ratings matrix:

R[cbind(ratings$userId, ratings$movieId)] <- ratings$rating

Let’s preview a few first rows and columns:
R[1:6, 1:18]

## 6 x 18 sparse Matrix of class "dgCMatrix"

##

## [1,] 4 4 4 5 5 3 5 4 5 5 5 5 3 5 4 5 3 3

## [2,] . . . . . . . . . . . . . . . . . .

## [3,] . . . . . . . . . . . . . . . . . .

##

## ..............................

## ........suppressing 1 rows in show(); maybe adjust 'options(max.print= *, width = *)'

## ..............................
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##

## [5,] 4 . . . 4 . . 4 . . . . . . . . 5 2

## [6,] . 5 4 4 1 . . 5 4 . 3 4 . 3 . . 2 5

9.3.3 Item-ItemSimilarities
To recall, the cosine similarity between 𝐫⋅,𝑖, 𝐫⋅,𝑗 ∈ ℝ𝑛 is given by:

𝑠𝐼
𝑖,𝑗 = 𝑆𝐶(𝐫⋅,𝑖, 𝐫⋅,𝑗) =

∑𝑛
𝑘=1 𝑟𝑘,𝑖 𝑟𝑘,𝑗

√∑𝑛
𝑘=1 𝑟2

𝑘,𝑖√∑𝑛
𝑘=1 𝑟2

𝑘,𝑗

In vector/matrix algebra notation, this is:

𝑠𝐼
𝑖,𝑗 = 𝑆𝐶(𝐫⋅,𝑖, 𝐫⋅,𝑗) =

𝐫𝑇
⋅,𝑖 𝐫⋅,𝑗

√𝐫𝑇
⋅,𝑖 𝐫⋅,𝑖√𝐫𝑇

⋅,𝑗 𝐫⋅,𝑗

As 𝐑 ∈ ℝ𝑛×𝑝, we can “almost” compute all the 𝑝 × 𝑝 cosine similarities at once by
applying:

𝐒𝐼 = 𝐑𝑇𝐑
…

Cosine similarities for item-item comparisons:
norms <- as.matrix(sqrt(colSums(R^2)))

Rx <- as.matrix(crossprod(R, R))

SI <- Rx/tcrossprod(norms)

SI[is.nan(SI)] <- 0 # there were some divisions by zero

Remark. crossprod(A,B) gives𝐀𝑇𝐁 and tcrossprod(A,B) gives𝐀𝐁𝑇.

9.3.4 Example Recommendations

recommend <- function(i, K, SI, movies) {

# get K most similar movies to the i-th one

ms <- order(SI[i,], decreasing=TRUE)

data.frame(

Title=movies$title[ms[1:K]],

SIC=SI[i,ms[1:K]]

)

}
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movies$title[1215]

## [1] "Monty Python's The Meaning of Life (1983)"

recommend(1215, 10, SI, movies)

## Title SIC

## 1 Monty Python's The Meaning of Life (1983) 1.00000

## 2 Monty Python's Life of Brian (1979) 0.61097

## 3 Monty Python and the Holy Grail (1975) 0.51415

## 4 House of Flying Daggers (Shi mian mai fu) (2004) 0.49322

## 5 Hitchhiker's Guide to the Galaxy, The (2005) 0.45482

## 6 Bowling for Columbine (2002) 0.45051

## 7 Shaun of the Dead (2004) 0.44566

## 8 O Brother, Where Art Thou? (2000) 0.44541

## 9 Ghost World (2001) 0.44416

## 10 Full Metal Jacket (1987) 0.44285

movies$title[1]

## [1] "Toy Story (1995)"

recommend(1, 10, SI, movies)

## Title SIC

## 1 Toy Story (1995) 1.00000

## 2 Toy Story 2 (1999) 0.57260

## 3 Jurassic Park (1993) 0.56564

## 4 Independence Day (a.k.a. ID4) (1996) 0.56426

## 5 Star Wars: Episode IV - A New Hope (1977) 0.55739

## 6 Forrest Gump (1994) 0.54710

## 7 Lion King, The (1994) 0.54115

## 8 Star Wars: Episode VI - Return of the Jedi (1983) 0.54109

## 9 Mission: Impossible (1996) 0.53891

## 10 Groundhog Day (1993) 0.53417

…and so on.

9.3.5 Clustering
All our ratings are 𝑟𝑖,𝑗 ≥ 0, therefore the cosine similarity is 𝑠𝐼

𝑖,𝑗 ≥ 0. Moreover, it
holds 𝑠𝐼

𝑖,𝑗 ≤ 1. Thus, a cosine similarity matrix can be turned into a dissimilarity
matrix:
DI <- 1.0-SI

DI[DI<0] <- 0.0 # account for numeric inaccuracies

DI <- as.dist(DI)
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This enables us to perform, e.g., the cluster analysis of items:
library("genie")

## Loading required package: genieclust

h <- hclust2(DI)

plot(h, labels=FALSE, ann=FALSE); box()
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10
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15

Figure 9.1: Cluster dendrogram for the movies

A 14-partition might look nice, let’s give it a try:
c <- cutree(h, k=14)

Example movies in the 3rd cluster:

Bottle Rocket (1996), Clerks (1994), Star Wars: Episode IV - A New Hope (1977),
Swingers (1996), Monty Python’s Life of Brian (1979), E.T. the Extra-Terrestrial (1982),
Monty Python and the Holy Grail (1975), Star Wars: Episode V - The Empire Strikes
Back (1980), Princess Bride, The (1987), Raiders of the Lost Ark (Indiana Jones and
the Raiders of the Lost Ark) (1981), Star Wars: Episode VI - Return of the Jedi (1983),
Blues Brothers,The (1980), Duck Soup (1933), Groundhog Day (1993), Back to the Fu-
ture (1985), Young Frankenstein (1974), Indiana Jones and the Last Crusade (1989),
Grosse Pointe Blank (1997), Austin Powers: InternationalMan ofMystery (1997),Men
in Black (a.k.a. MIB) (1997)

The definitely have something in common!

Example movies in the 1st cluster:

Toy Story (1995), Heat (1995), Seven (a.k.a. Se7en) (1995), Usual Suspects, The (1995),
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FromDuskTillDawn (1996), Braveheart (1995), RobRoy (1995),Desperado (1995), Billy
Madison (1995), Dumb&Dumber (Dumb and Dumber) (1994), EdWood (1994), Pulp
Fiction (1994), Stargate (1994), Tommy Boy (1995), Clear and Present Danger (1994),
Forrest Gump (1994), Jungle Book, The (1994), Mask, The (1994), Fugitive, The (1993),
Jurassic Park (1993)

… and so forth.

9.4 Outro
9.4.1 Remarks
Good recommender systems are perfect tools to increase the revenue of any user-
centric enterprise.

Not a single algorithm, but an ensemble (a proper combination) of different ap-
proaches is often used in practice, see the Further Reading section below for the
detailed information of the Netflix Prize winners.

Recommender systems are an interesting fusion of the techniques we have already
studied – linear models, K-nearest neighbours etc.

Building recommender systems is challenging, becausedata is large yet often sparse.
For instance, the ratio of available ratings vs. all possible user-itemvaluations for the
Netflix Prize (obviously, it is just a sample of the complete dataset that Netflix has)
is equal to:
100480507/(480189*17770)

## [1] 0.011776

A sparse matrix (see R package Matrix) data structure is often used for storing of and
computing over such data effectively.

Note that someusers are biased in the sense that they aremore critical or enthusiastic
than average users.

Exercise 9.5 Is 3 stars a “bad”, “fair enough” or “good” rating for you? Would you go to a
bar/restaurant ranked 3.0 by you favouriteMaps app community?

It is particularly challenging to predict the preferences of users that cast few ratings,
e.g., those who just signed up (the cold start problem).

“Hill et al. [1995] have shown that users provide inconsistent ratings
when asked to rate the same movie at different times. They suggest
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that an algorithm cannot be more accurate than the variance in a
user’s ratings for the same item.” (Herlocker et al. 2004: p. 6)

It is good to take into account the temporal (time-based) characteristics of data as
well as external knowledge (e.g., how long ago a rating was cast, what is a film’s
genre).

The presented approaches are vulnerable to attacks – bots may be used to promote
or inhibit selected items.

9.4.2 Further Reading
Recommended further reading: (Herlocker et al. 2004), (Ricci et al. 2011), (Lü et al.
2012), (Harper & Konstan 2015). See also the Netflix prize winners: (Koren 2009),
(Töscher et al. 2009), (Piotte & Chabbert 2009). Also don’t forget to take a look at
the R package recommenderlab (amongst others).





A
Notation Convention

Abbreviations

a.k.a. == also known as

w.r.t. == with respect to

s.t. == such that

iff == if and only if

e.g. == for example (Latin: exempli gratia)

i.e. == that is (Latin: id est)

etc. == and so forth (Latin: et cetera)

AI == artificial intelligence

API == application programming interface

GA == genetic algorithm

GD == gradient descent

GLM == generalised linear model

ML ==machine learning

NN == neural network

SGD == stochastic gradient descent

IDE = integrated development environment

Notation Convention – Logic and SetTheory

∀ – for all

∃ – exists

By writing 𝑥 ∈ {𝑎, 𝑏, 𝑐}wemean that “𝑥 is in a set that consists of 𝑎, 𝑏 and 𝑐” or “𝑥 is
either 𝑎, 𝑏 or 𝑐”

𝐴 ⊆ 𝐵 – set 𝐴 is a subset of set 𝐵 (every element in 𝐴 belongs to 𝐵, 𝑥 ∈ 𝐴 implies
that 𝑥 ∈ 𝐵)
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𝐴 ∪ 𝐵 – union (sum) of two sets, 𝑥 ∈ 𝐴 ∪ 𝐵 iff 𝑥 ∈ 𝐴 or 𝑥 ∈ 𝐵

𝐴 ∩ 𝐵 – intersection (sum) of two sets, 𝑥 ∈ 𝐴 ∩ 𝐵 iff 𝑥 ∈ 𝐴 and 𝑥 ∈ 𝐵

𝐴 � 𝐵 – difference of two sets, 𝑥 ∈ 𝐴 � 𝐵 iff 𝑥 ∈ 𝐴 and 𝑥 ∉ 𝐵

𝐴 × 𝐵 – Cartesian product of two sets,𝐴 × 𝐵 = {(𝑎, 𝑏) ∶ 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}

𝐴𝑝 = 𝐴 × 𝐴 × ⋯ × 𝐴 (𝑝 times) for any 𝑝

Notation Convention – Symbols

𝐗,𝐘,𝐀, 𝐈,𝐂 – bold (I use it for denoting vectors andmatrices)
𝕏, 𝕐, 𝔸, 𝕀, ℂ – blackboard bold (I sometimes use it for sets)

𝒳, 𝒴, 𝒜, ℐ, 𝒞 – calligraphic (I use it for set families = sets of sets)

𝑋, 𝑥,𝐗, 𝐱 – inputs (usually)
𝑌, 𝑦,𝐘, 𝐲 – outputs
�̂�, ̂𝑦, �̂�, ̂𝐲 – predicted outputs (usually)
• 𝑋 – independent/explanatory/predictor variable

• 𝑌 – dependent/response/predicted variable

ℝ – the set of real numbers,ℝ = (−∞, ∞)

ℕ – the set of natural numbers,ℕ = {1, 2, 3, … }

ℕ0 – the set of natural numbers including zero,ℕ0 = ℕ ∪ {0}

ℤ – the set of integer numbers,ℤ = {… , −2, −1, 0, 1, 2, … }

[0, 1] – the unit interval

(𝑎, 𝑏) – an open interval; 𝑥 ∈ (𝑎, 𝑏) iff 𝑎 < 𝑥 < 𝑏 for some 𝑎 < 𝑏

[𝑎, 𝑏] – a closed interval; 𝑥 ∈ [𝑎, 𝑏] iff 𝑎 ≤ 𝑥 ≤ 𝑏 for some 𝑎 ≤ 𝑏

Notation Convention – Vectors andMatrices

𝒙 = (𝑥1, … , 𝑥𝑛) – a sequence of 𝑛 elements (𝑛-ary sequence/vector)

if it consists of real numbers, we write 𝒙 ∈ ℝ𝑛

𝐱 = [𝑥1 𝑥2 … 𝑥𝑝] – a row vector, 𝐱 ∈ ℝ1×𝑝 (a matrix with 1 row)

𝐱 = [𝑥1 𝑥2 … 𝑥𝑛]𝑇 – a column vector, 𝐱 ∈ ℝ𝑛×1 (a matrix with 1 column)

𝐗 ∈ ℝ𝑛×𝑝 –matrix with 𝑛 rows and 𝑝 columns
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𝐗 =
⎡
⎢
⎢
⎢
⎣

𝑥1,1 𝑥1,2 ⋯ 𝑥1,𝑝
𝑥2,1 𝑥2,2 ⋯ 𝑥2,𝑝

⋮ ⋮ ⋱ ⋮
𝑥𝑛,1 𝑥𝑛,2 ⋯ 𝑥𝑛,𝑝

⎤
⎥
⎥
⎥
⎦

𝑥𝑖,𝑗 – element in the 𝑖-th row, 𝑗-th column

𝐱𝑖,⋅ – the 𝑖-th row of𝐗
𝐱⋅,𝑗 – the 𝑗-th column of𝐗

𝐗 =
⎡
⎢⎢⎢
⎣

𝐱1,⋅
𝐱2,⋅

⋮
𝐱𝑛,⋅

⎤
⎥⎥⎥
⎦

= [ 𝐱⋅,1 𝐱⋅,2 ⋯ 𝐱⋅,𝑝 ] .

𝐱𝑖,⋅ = [ 𝑥𝑖,1 𝑥𝑖,2 ⋯ 𝑥𝑖,𝑝 ] .

𝐱⋅,𝑗 = [ 𝑥1,𝑗 𝑥2,𝑗 ⋯ 𝑥𝑛,𝑗 ]
𝑇

=
⎡
⎢
⎢
⎢
⎣

𝑥1,𝑗
𝑥2,𝑗

⋮
𝑥𝑛,𝑗

⎤
⎥
⎥
⎥
⎦

,

𝑇 denotes the matrix transpose; 𝐁 = 𝐀𝑇 is a matrix such that 𝑏𝑖,𝑗 = 𝑎𝑗,𝑖.

‖𝒙‖ = ‖𝒙‖2 = √∑𝑛
𝑖=1 𝑥2

𝑖 – the Euclidean norm

Notation Convention – Functions

𝑓 ∶ 𝑋 → 𝑌 means that 𝑓 is a function mapping inputs from set 𝑋 (the domain of 𝑓 )
to elements of 𝑌 (the codomain)

𝑥 ↦ 𝑥2 denotes a (inline) function mapping 𝑥 to 𝑥2, equivalent to function(x) x^2

in R

exp 𝑥 = 𝑒𝑥 – exponential function with base 𝑒 ≃ 2.718

log 𝑥 – natural logarithm (base 𝑒)

it holds 𝑒𝑥 = 𝑦 iff log 𝑦 = 𝑥

log 𝑎𝑏 = log 𝑎 + log 𝑏

log 𝑎𝑐 = 𝑐 log 𝑎

log 𝑎/𝑏 = log 𝑎 − log 𝑏

log 1 = 0
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log 𝑒 = 1

hence log 𝑒𝑥 = 𝑥

Notation Convention – Sums and Products

∑𝑛
𝑖=1 𝑥𝑖 = 𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛

∑𝑖=1,…,𝑛 𝑥𝑖 – the same

∑𝑖∈{1,…,𝑛} 𝑥𝑖 – the same

note display (stand-alone)
𝑛

∑
𝑖=1

𝑥𝑖 vs text (in-line)∑
𝑛
𝑖=1 𝑥𝑖 style

∏𝑛
𝑖=1 𝑥𝑖 = 𝑥1𝑥2 … 𝑥𝑛



B
Setting Up the R Environment

These lecture notes are distributed in the hope that theywill be useful.
Any bug reports are appreciated.

B.1 Installing R
R and Python are the languages of modern data science.The former is slightly more
oriented towards data modelling, analysis and visualisation as well as statistical
computing. It has a gentle learning curve, which makes is very suitable even for be-
ginners – just like us!

R is available for Windows as well as MacOS, Linux and other Unix-like operating
systems. It can be downloaded from the R project website, see https://www.r-proj
ect.org/ (or installed through system-specific package repositories).

Remark. From now on we assume that you have installed the R environment.

B.2 Installing an IDE
As we wish to make our first steps with the R language as stress- and hassle-free as
possible, let’s stick to a very user-friendly development environment called RStudio,
which can be downloaded from https://rstudio.com/products/rstudio/ (choose
RStudio Desktop Open Source Edition).

Remark. There are of course many other options for working with R, both interact-
ive and non-interactive, including Jupyter Notebooks (see https://irkernel.githu
b.io/), dynamically generated reports (see https://yihui.org/knitr/options/) and
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plain shell scripts executed from a terminal. However, for now let’s leave that to
more advanced users.

B.3 Installing Recommended Packages
Once we get the above up and running, from within RStudio, we need to install a
few packages which we’re going to use during the course of this course. Execute the
following commands in the R console (bottom-left Rstudio pane):
pkgs <- c("Cairo", "DEoptim", "fastcluster", "FNN", "genie",

"genieclust", "gsl", "hydroPSO", "ISLR", "keras",

"Matrix", "microbenchmark", "pdist", "RColorBrewer",

"recommenderlab", "rpart", "rpart.plot", "rworldmap",

"scatterplot3d", "stringi", "tensorflow", "tidyr",

"titanic", "vioplot")

install.packages(pkgs)

What is more, in order to be able to play with neural networks, we will need some
Python environment, for example the Anaconda Distribution Python 3.x, see https:
//www.anaconda.com/distribution/.

Remark. Do not download Python 2.7.

Installation instructions can be found at https://docs.anaconda.com/anaconda/i
nstall/. This is required for the R packages tensorflow and keras, see https://tens
orflow.rstudio.com/installation/. Once this is installed, execute the following R
commands in the console:
library("tensorflow")

install_tensorflow()

B.4 First R Script in RStudio
Let’s open RStudio and perform the following steps:

1. Create a New Project where we will store all the scripts related to this
book.ClickFile→NewProject and then choose to start in abrandnewwork-
ing directory, in any location you like. Choose New Project as the project
type.

From now on, we are assuming that the project name is LMLCR and the

https://www.anaconda.com/distribution/
https://www.anaconda.com/distribution/
https://docs.anaconda.com/anaconda/install/
https://docs.anaconda.com/anaconda/install/
https://tensorflow.rstudio.com/installation/
https://tensorflow.rstudio.com/installation/
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project has been opened. All source files we create will be relative to the
project directory.

2. Create a new R source file, File → New File → R Script. Save the file as, for
example, sandbox_01.R.

The source editor (top left pane) behaves just like any other text editor.
Standard keyboard shortcuts are available, such as CTRL+C and CTRL+V
(Cmd+C and Cmd+V onMacOS) for copy and paste, respectively.

A list of keyboard shortcuts is available at https://support.rstudio.com/
hc/en-us/articles/200711853-Keyboard-Shortcuts

3. Input the following R code into the editor:

# My first R script

# This is a comment

# Another comment

# Everything from '#' to the end of the line

# is ignored by the R interpreter

print("Hello world") # prints a given character string

print(2+2) # evaluates the expression and prints the result

x <- seq(0, 10, length.out=100) # a new numeric vector

y <- x^2 # squares every element in x

plot(x, y, las=1, type="l") # plots y as a function of x

4. Execute the 5 above commands, line by line, by positioning the keyboard
cursor accordingly and pressing Ctrl+Enter (Cmd+Return onMacOS).

Each time, the commandwill be copied to the console (bottom-left pane)
and evaluated.

The last line generates a nice plot which will appear in the bottom-right
pane.

While you learn,we recommend that you get used towriting your code in anR script
and executing it just as we did above.

On a side note, you can execute (source) the whole script by pressing Ctrl+Shift+S
(Cmd+Shift+S onMacOS).

https://support.rstudio.com/hc/en-us/articles/200711853-Keyboard-Shortcuts
https://support.rstudio.com/hc/en-us/articles/200711853-Keyboard-Shortcuts




C
Vector Algebra in R

These lecture notes are distributed in the hope that theywill be useful.
Any bug reports are appreciated.

This chapter is a step-by-step guide to vector computations in R. It also explains the
basic mathematical notation around vectors.

You’re encouraged to not only simply read the chapter, but also to execute yourself
the R code provided. Play with it, do some experiments, get curious about how R
works. Read the documentation on the functions you are calling, e.g., ?seq, ?sample
and so on.

Technical and mathematical literature isn’t belletristic. It requires active (pro-active
even) thinking. Sometimes going through a single page can take an hour. Or a day.
If you don’t understand something, keep thinking, go back, ask yourself questions,
take a look at other sources. This is not a linear process. This is what makes it fun
and creative. To become a good programmer you need a lot of practice, there are no
shortcuts. But the whole endeavour is worth the hassle!

C.1 Motivation
Vector and matrix algebra provides us with a convenient language for expressing
computations on sequential and tabular data.

Vector and matrix algebra operations are supported by every major programming
language – either natively (e.g., R, Matlab, GNUOctave, Mathematica) or via an ad-
ditional library/package (e.g, Python with numpy, tensorflow, or pytorch; C++ with
Eigen/Armadillo; C, C++ or Fortran with LAPACK).

By using matrix notation, we generate more concise and readable code.
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For instance, given two vectors 𝒙 = (𝑥1, … , 𝑥𝑛) and 𝒚 = (𝑦1, … , 𝑦𝑛) like:
x <- c(1.5, 3.5, 2.3,-6.5)

y <- c(2.9, 8.2,-0.1, 0.8)

Instead of writing:
s <- 0

n <- length(x)

for (i in 1:n)

s <- s + (x[i]-y[i])^2

sqrt(s)

## [1] 9.1159

to mean:

√(𝑥1 − 𝑦1)2 + (𝑥2 − 𝑦2)2 + ⋯ + (𝑥𝑛 − 𝑦𝑛)2 =
√
√√
⎷

𝑛
∑
𝑖=1

(𝑥𝑖 − 𝑦𝑖)2,

which denotes the (Euclidean) distance between the two vectors (the square root of
the sum of squared differences between the corresponding elements in 𝒙 and 𝒚), we
shall soon become used to writing:
sqrt(sum((x-y)^2))

## [1] 9.1159

or:

√(𝒙 − 𝒚)𝑇(𝒙 − 𝒚)

or even:

‖𝒙 − 𝒚‖2

In order to be able to read this notation, we only have to get to know the most com-
mon “building blocks”.There are just a few of them, but it’ll take some time until we
become comfortable with their use.

What’smore, we should note that vectorised codemight bemuch faster than the for
loop-based one (a.k.a. “iterative” style):
library("microbenchmark")

n <- 10000

x <- runif(n) # n random numbers in [0,1]

y <- runif(n)

print(microbenchmark(
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t1={

# "iterative" style

s <- 0

n <- length(x)

for (i in 1:n)

s <- s + (x[i]-y[i])^2

sqrt(s)

},

t2={

# "vectorised" style

sqrt(sum((x-y)^2))

}

), signif=3, unit='relative')

## Unit: relative

## expr min lq mean median uq max neval

## t1 119 119 105 117 114 85 100

## t2 1 1 1 1 1 1 100

C.2 Numeric Vectors
C.2.1 CreatingNumeric Vectors
First let’s introduce a few ways with which we can create numeric vectors.

C.2.1.1 c()

The c() function combines a given list of values to form a sequence:
c(1, 2, 3)

## [1] 1 2 3

c(1, 2, 3, c(4, 5), c(6, c(7, 8)))

## [1] 1 2 3 4 5 6 7 8

Note that when we use the assignment operator, <- or = (both are equivalent), print-
ing of the output is suppressed:
x <- c(1, 2, 3) # doesn't print anything

print(x)

## [1] 1 2 3

However, we can enforce it by parenthesising the whole expression:
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(x <- c(1, 2, 3))

## [1] 1 2 3

In order to determine that x is indeed a numeric vector, we call:
mode(x)

## [1] "numeric"

class(x)

## [1] "numeric"

Remark. These two functions might return different results. For instance, in the
next chapterwenote that anumericmatrixwill yieldmode()of numericandclass()
of matrix.

What is more, we can get the number of elements in x by calling:
length(x)

## [1] 3

C.2.1.2 seq()

To create an arithmetic progression, i.e., a sequence of equally-spaced numbers, we
can call the seq() function
seq(1, 9, 2)

## [1] 1 3 5 7 9

If we access the function’s documentation (by executing ?seq in the console), we’ll
note that the function takes a couple of parameters: from, to, by, length.out etc.

The above call is equivalent to:
seq(from=1, to=9, by=2)

## [1] 1 3 5 7 9

The by argument can be replaced with length.out, which gives the desired size:
seq(0, 1, length.out=5)

## [1] 0.00 0.25 0.50 0.75 1.00

Note that R supports partial matching of argument names:
seq(0, 1, len=5)

## [1] 0.00 0.25 0.50 0.75 1.00
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Quite often we need progressions with step equal to 1 or -1. Such vectors can be gen-
erated by applying the : operator.
1:10 # from:to (inclusive)

## [1] 1 2 3 4 5 6 7 8 9 10

-1:-10

## [1] -1 -2 -3 -4 -5 -6 -7 -8 -9 -10

C.2.1.3 rep()

Moreover, rep() replicates a given vector. Check out the function’s documentation
(see ?rep) for the meaning of the arguments provided below.
rep(1, 5)

## [1] 1 1 1 1 1

rep(1:3, 4)

## [1] 1 2 3 1 2 3 1 2 3 1 2 3

rep(1:3, c(2, 4, 3))

## [1] 1 1 2 2 2 2 3 3 3

rep(1:3, each=4)

## [1] 1 1 1 1 2 2 2 2 3 3 3 3

C.2.1.4 Pseudo-RandomVectors

We can also generate vectors of pseudo-random values. For instance, the follow-
ing generates 5 deviates from the uniform distribution (every number has the same
probability) on the unit (i.e., [0, 1]) interval:
runif(5, 0, 1)

## [1] 0.56490 0.55881 0.44148 0.20764 0.66964

We call such numbers pseudo-random, because they are generated arithmetically.
In fact, by setting the randomnumber generator’s state (also called the seed), we can
obtain reproducible results.
set.seed(123)

runif(5, 0, 1) # a,b,c,d,e

## [1] 0.28758 0.78831 0.40898 0.88302 0.94047

runif(5, 0, 1) # f,g,h,i,j

## [1] 0.045556 0.528105 0.892419 0.551435 0.456615
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set.seed(123)

runif(5, 0, 1) # a,b,c,d,e again!

## [1] 0.28758 0.78831 0.40898 0.88302 0.94047

Note thedifference between theuniformdistributionon [0, 1] and thenormal distri-
butionwith expected value of 0 and standard deviation of 1 (also called the standard
normal distribution), see Figure C.1.
par(mfrow=c(1, 2)) # align plots in one row and two columns

hist(runif(10000, 0, 1), col="white", ylim=c(0, 2500)); box()

hist(rnorm(10000, 0, 1), col="white", ylim=c(0, 2500)); box()
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Figure C.1: Uniformly vs. normally distributed random variables

Another useful function samples a number of values from a given vector, either with
or without replacement:
sample(1:10, 8, replace=TRUE) # with replacement

## [1] 3 3 10 2 6 5 4 6

sample(1:10, 8, replace=FALSE) # without replacement

## [1] 9 5 3 8 1 4 6 10

Note that if n is a single number, sample(n, ...) is equivalent to sample(1:n, ...).
This is a dangerous behaviour than may lead to bugs in our code. Read more at
?sample.
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C.2.2 Vector-Scalar Operations
Mathematically, we sometimes refer to a vector that is reduced to a single compon-
ent as a scalar. We are used to denoting such objects with lowercase letters such as
𝑎, 𝑏, 𝑖, 𝑠, 𝑥 ∈ ℝ.

Remark. Note that some programming languages distinguish between atomic nu-
merical entities and length-one vectors, e.g., 7 vs. [7] in Python. This is not the
case in R, where length(7) returns 1.

Vector-scalar arithmetic operations such as 𝑠𝒙 (multiplication of a vector 𝒙 =
(𝑥1, … , 𝑥𝑛) by a scalar 𝑠) result in a vector 𝒚 such that 𝑦𝑖 = 𝑠𝑥𝑖, 𝑖 = 1, … , 𝑛.

The same rule holds for, e.g., 𝑠 + 𝒙, 𝒙 − 𝑠, 𝒙/𝑠.
0.5 * c(1, 10, 100)

## [1] 0.5 5.0 50.0

10 + 1:5

## [1] 11 12 13 14 15

seq(0, 10, by=2)/10

## [1] 0.0 0.2 0.4 0.6 0.8 1.0

By−𝒙we will mean (−1)𝒙:
-seq(0, 1, length.out=5)

## [1] 0.00 -0.25 -0.50 -0.75 -1.00

Note that in R the same rule applies for exponentiation:
(0:5)^2 # synonym: (1:5)**2

## [1] 0 1 4 9 16 25

2^(0:5)

## [1] 1 2 4 8 16 32

However, in mathematics, we are not used to writing 2𝒙 or 𝒙2.

C.2.3 Vector-Vector Operations
Let 𝒙 = (𝑥1, … , 𝑥𝑛) and 𝒚 = (𝑦1, … , 𝑦𝑛) be two vectors of identical lengths.

Arithmetic operations 𝒙 + 𝒚 and 𝒙 − 𝒚 are performed elementwise, i.e., they result in
a vector 𝒛 such that 𝑧𝑖 = 𝑥𝑖 + 𝑦𝑖 and 𝑧𝑖 = 𝑥𝑖 − 𝑦𝑖, respectively, 𝑖 = 1, … , 𝑛.
x <- c(1, 2, 3, 4)

y <- c(1, 10, 100, 1000)

x+y
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## [1] 2 12 103 1004

x-y

## [1] 0 -8 -97 -996

Although inmathematics we are not used to using any special notation for element-
wise multiplication, division and exponentiation, this is available in R.
x*y

## [1] 1 20 300 4000

x/y

## [1] 1.000 0.200 0.030 0.004

y^x

## [1] 1e+00 1e+02 1e+06 1e+12

Remark. 1e+12 is a number written in the scientific notation. It means “1 times 10 to
the power of 12”, i.e., 1 × 1012. Physicists love this notation, because they are used
to dealing with very small (think sizes of quarks) and very large (think distances
between galaxies) entities.

Moreover, inR the recyclingrule is applied ifweperformelementwise operations on
vectors of different lengths – the shorter vector is recycled as many times as needed
to match the length of the longer vector, just as if we were performing:
rep(1:3, length.out=12) # recycle 1,2,3 to get 12 values

## [1] 1 2 3 1 2 3 1 2 3 1 2 3

Therefore:
1:6 * c(1)

## [1] 1 2 3 4 5 6

1:6 * c(1,10)

## [1] 1 20 3 40 5 60

1:6 * c(1,10,100)

## [1] 1 20 300 4 50 600

1:6 * c(1,10,100,1000)

## Warning in 1:6 * c(1, 10, 100, 1000): longer object length is not a

## multiple of shorter object length

## [1] 1 20 300 4000 5 60
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Note that a warning is not an error – we still get a result that makes sense.

C.2.4 Aggregation Functions
R implements a couple of aggregation functions:

• sum(x) =∑𝑛
𝑖=1 𝑥𝑖 = 𝑥1 + 𝑥2 + ⋯ + 𝑥𝑛

• prod(x) =∏𝑛
𝑖=1 𝑥𝑖 = 𝑥1𝑥2 … 𝑥𝑛

• mean(x) = 1
𝑛 ∑𝑛

𝑖=1 𝑥𝑖 – arithmetic mean

• var(x) = sum((x-mean(x))^2)/(length(x)-1) = 1
𝑛−1 ∑𝑛

𝑖=1 (𝑥𝑖 − 1
𝑛 ∑𝑛

𝑗=1 𝑥𝑗)
2
– vari-

ance
• sd(x) = sqrt(var(x)) – standard deviation

see also: min(), max(), median(), quantile().

Remark. Remember that you can always access the Rmanual by typing ?function-
name, e.g., ?quantile.

Remark. Note that∑𝑛
𝑖=1 𝑥𝑖 can also be written as

𝑛
∑
𝑖=1

𝑥𝑖 or even ∑
𝑖=1,…,𝑛

𝑥𝑖. These all

mean the sum of 𝑥𝑖 for 𝑖 from 1 to 𝑛, that is, the sum of 𝑥1, 𝑥2, …, 𝑥𝑛, i.e., 𝑥1 + 𝑥2 +
⋯ + 𝑥𝑛.

x <- runif(1000)

mean(x)

## [1] 0.49728

median(x)

## [1] 0.48995

min(x)

## [1] 0.00046535

max(x)

## [1] 0.9994

C.2.5 Special Functions
Furthermore, R supports numerous mathematical functions, e.g., sqrt(), abs(),
round(), log(), exp(), cos(), sin(). All of them are vectorised – when applied on
a vector of length 𝑛, they yield a vector of length 𝑛 in result.

For example, here is howwe can compute the square roots of all the integers between
1 and 9:
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sqrt(1:9)

## [1] 1.0000 1.4142 1.7321 2.0000 2.2361 2.4495 2.6458 2.8284 3.0000

Vectorisation is super-convenientwhen it comes to, for instance, plotting (see Figure
C.2).
x <- seq(-2*pi, 6*pi, length.out=51)

plot(x, sin(x), type="l")

lines(x, cos(x), col="red") # add a curve to the current plot
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x
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(x

)

Figure C.2: An example plot of the sine and cosine functions

Exercise C.1 Try increasing the length.out argument to make the curves smoother.

C.2.6 Norms andDistances
Norms are used to measure the size of an object. Mathematically, we will also be in-
terested in the following norms:

• Euclidean norm:

‖𝒙‖ = ‖𝒙‖2 =
√
√√
⎷

𝑛
∑
𝑖=1

𝑥2
𝑖

this is nothing else than the length of the vector 𝒙
• Manhattan (taxicab) norm:

‖𝒙‖1 =
𝑛

∑
𝑖=1

|𝑥𝑖|
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• Chebyshev (maximum) norm:

‖𝒙‖∞ = max
𝑖=1,…,𝑛

|𝑥𝑖| = max{|𝑥1|, |𝑥2|, … , |𝑥𝑛|}

The above norms can be easily implemented by means of the building blocks intro-
duced above.This is super easy:
z <- c(1, 2)

sqrt(sum(z^2)) # or norm(z, "2"); Euclidean

## [1] 2.2361

sum(abs(z)) # Manhattan

## [1] 3

max(abs(z)) # Chebyshev

## [1] 2

Also note that all the norms easily generate the corresponding distances (metrics)
between two given points. In particular:

‖𝒙 − 𝒚‖ =
√
√√
⎷

𝑛
∑
𝑖=1

(𝑥𝑖 − 𝑦𝑖)
2

gives the Euclidean distance (metric) between the two vectors.
u <- c(1, 0)

v <- c(1, 1)

sqrt(sum((u-v)^2))

## [1] 1

This is the “normal” distance that you learned at school.

C.2.7 Dot Product (*)
What is more, given two vectors of identical lengths, 𝒙 and 𝒚, we define their dot
product (a.k.a. scalar or inner product) as:

𝒙 ⋅ 𝒚 =
𝑛

∑
𝑖=1

𝑥𝑖𝑦𝑖.

Let’s stress that this is not the same as the elementwise vector multiplication in R –
the result is a single number.
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u <- c(1, 0)

v <- c(1, 1)

sum(u*v)

## [1] 1

Remark. (*) Note that the squared Euclidean norm of a vector is equal to the dot
product of the vector and itself, ‖𝒙‖2 = 𝒙 ⋅ 𝒙.

(*) Interestingly, a dot product has a nice geometrical interpretation:

𝒙 ⋅ 𝒚 = ‖𝒙‖‖𝒚‖ cos 𝛼

where 𝛼 is the angle between the two vectors. In other words, it is the product of the
lengths of the two vectors and the cosine of the angle between them. Note that we
can get the cosine part by computing the dot product of the normalised vectors, i.e.,
such that their lengths are equal to 1.

For example, the two vectors u and v defined above can be depicted as in Figure C.3.
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Figure C.3: Example vectors in 2D

We can compute the angle between them by calling:
(len_u <- sqrt(sum(u^2))) # length == Euclidean norm

## [1] 1

(len_v <- sqrt(sum(v^2)))

## [1] 1.4142
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(cos_angle_uv <- (sum(u*v)/(len_u*len_v))) # cosine of the angle

## [1] 0.70711

acos(cos_angle_uv)*180/pi # angle in degs

## [1] 45

C.2.8 Missing andOther Special Values
R has a notion of a missing (not-available) value. It is very useful in data analysis,
as we sometimes don’t have an information on an object’s feature. For instance, we
might not know a patient’s age if he was admitted to the hospital unconscious.
x <- c(1, 2, NA, 4, 5)

Operations on missing values generally result in missing values – that makes a lot
sense.
x + 11:15

## [1] 12 14 NA 18 20

mean(x)

## [1] NA

If we wish to compute a vector’s aggregate after all, we can get rid of the missing
values by calling na.omit():
mean(na.omit(x)) # mean of non-missing values

## [1] 3

We can also make use of the na.rm parameter of the mean() function (however, not
every aggregation function has it – always refer to documentation).
mean(x, na.rm=TRUE)

## [1] 3

Remark. Note that in R, a dot has no special meaning. na.omit is as good of a func-
tion’s name or variable identifier as na_omit, naOmit, NAOMIT, naomit and NaOmit.
Note that, however, R is a case-sensitive language – these are all different symbols.
Readmore in theDetails section of ?make.names.

Moreover, some arithmetic operations can result in infinities (±∞):
log(0)

## [1] -Inf
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10^1000 # too large

## [1] Inf

Also, sometimes we’ll get a not-a-number, NaN. This is not a missing value, but a “in-
valid” result.
sqrt(-1)

## Warning in sqrt(-1): NaNs produced

## [1] NaN

log(-1)

## Warning in log(-1): NaNs produced

## [1] NaN

Inf-Inf

## [1] NaN

C.3 Logical Vectors
C.3.1 Creating Logical Vectors
In R there are 3 (!) logical values: TRUE, FALSE and geez, I don’t know, NAmaybe?
c(TRUE, FALSE, TRUE, NA, FALSE, FALSE, TRUE)

## [1] TRUE FALSE TRUE NA FALSE FALSE TRUE

(x <- rep(c(TRUE, FALSE, NA), 2))

## [1] TRUE FALSE NA TRUE FALSE NA

mode(x)

## [1] "logical"

class(x)

## [1] "logical"

length(x)

## [1] 6

Remark. By default, T is a synonym for TRUE and F for FALSE. This may be changed
though so it’s better not to rely on these.
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C.3.2 Logical Operations
Logical operators such as & (and) and | (or) are performed in the same manner as
arithmetic ones, i.e.:

• they are elementwise operations and
• recycling rule is applied if necessary.

For example,
TRUE & TRUE

## [1] TRUE

TRUE & c(TRUE, FALSE)

## [1] TRUE FALSE

c(FALSE, FALSE, TRUE, TRUE) | c(TRUE, FALSE, TRUE, FALSE)

## [1] TRUE FALSE TRUE TRUE

The ! operator stands for logical elementwise negation:
!c(TRUE, FALSE)

## [1] FALSE TRUE

Generally, operations on NAs yield NA unless other solution makes sense.
u <- c(TRUE, FALSE, NA)

v <- c(TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, NA, NA, NA)

u & v # elementwise AND (conjunction)

## [1] TRUE FALSE NA FALSE FALSE FALSE NA FALSE NA

u | v # elementwise OR (disjunction)

## [1] TRUE TRUE TRUE TRUE FALSE NA TRUE NA NA

!u # elementwise NOT (negation)

## [1] FALSE TRUE NA

C.3.3 ComparisonOperations
Wecancompare the correspondingelementsof twonumeric vectors andget a logical
vector in result. Operators such as < (less than), <= (less than or equal), == (equal), !=
(not equal), > (greater than) and >= (greater than or equal) are again elementwise and
use the recycling rule if necessary.
3 < 1:5 # c(3, 3, 3, 3, 3) < c(1, 2, 3, 4, 5)

## [1] FALSE FALSE FALSE TRUE TRUE
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1:2 == 1:4 # c(1,2,1,2) == c(1,2,3,4)

## [1] TRUE TRUE FALSE FALSE

z <- c(0, 3, -1, 1, 0.5)

(z >= 0) & (z <= 1)

## [1] TRUE FALSE FALSE TRUE TRUE

C.3.4 Aggregation Functions
Also note the following operations on logical vectors:
z <- 1:10

all(z >= 5) # are all values TRUE?

## [1] FALSE

any(z >= 5) # is there any value TRUE?

## [1] TRUE

Moreover:
sum(z >= 5) # how many TRUE values are there?

## [1] 6

mean(z >= 5) # what is the proportion of TRUE values?

## [1] 0.6

The behaviour of sum() and mean() is dictated by the fact that, when interpreted in
numeric terms, TRUE is interpreted as numeric 1 and FALSE as 0.
as.numeric(c(FALSE, TRUE))

## [1] 0 1

Therefore in the example above we have:
z >= 5

## [1] FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE

as.numeric(z >= 5)

## [1] 0 0 0 0 1 1 1 1 1 1

sum(as.numeric(z >= 5)) # the same as sum(z >= 5)

## [1] 6

Yes, there are 6 values equal to TRUE (or 6 ones after conversion), the sum of zeros
and ones gives the number of ones.
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C.4 Character Vectors
C.4.1 Creating Character Vectors
Individual character strings can be created using double quotes or apostrophes.
These are the elements of character vectors
(x <- "a string")

## [1] "a string"

mode(x)

## [1] "character"

class(x)

## [1] "character"

length(x)

## [1] 1

rep(c("aaa", 'bb', "c"), 2)

## [1] "aaa" "bb" "c" "aaa" "bb" "c"

C.4.2 Concatenating Character Vectors
To join (concatenate) the corresponding elements of two or more character vectors,
we call the paste() function:
paste(c("a", "b", "c"), c("1", "2", "3"))

## [1] "a 1" "b 2" "c 3"

paste(c("a", "b", "c"), c("1", "2", "3"), sep="")

## [1] "a1" "b2" "c3"

Also note:
paste(c("a", "b", "c"), 1:3) # the same as as.character(1:3)

## [1] "a 1" "b 2" "c 3"

paste(c("a", "b", "c"), 1:6) # recycling

## [1] "a 1" "b 2" "c 3" "a 4" "b 5" "c 6"

paste(c("a", "b", "c"), 1:6, c("!", "?"))
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## [1] "a 1 !" "b 2 ?" "c 3 !" "a 4 ?" "b 5 !" "c 6 ?"

C.4.3 Collapsing Character Vectors
We can also collapse a sequence of strings to a single string:
paste(c("a", "b", "c", "d"), collapse="")

## [1] "abcd"

paste(c("a", "b", "c", "d"), collapse=",")

## [1] "a,b,c,d"

C.5 Vector Subsetting
C.5.1 Subsettingwith Positive Indices
In order to extract subsets (parts) of vectors, we use the square brackets:
(x <- seq(10, 100, 10))

## [1] 10 20 30 40 50 60 70 80 90 100

x[1] # the first element

## [1] 10

x[length(x)] # the last element

## [1] 100

More than one element at a time can also be extracted:
x[1:3] # the first three

## [1] 10 20 30

x[c(1, length(x))] # the first and the last

## [1] 10 100

For example, the order() function returns the indices of the smallest, 2nd smallest,
3rd smallest, …, the largest element in a given vector.Wewill use this functionwhen
implementing our first classifier.
y <- c(50, 30, 10, 20, 40)

(o <- order(y))

## [1] 3 4 2 5 1
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Hence, we see that the smallest element in y is at index 3 and the largest at index 1:
y[o[1]]

## [1] 10

y[o[length(y)]]

## [1] 50

Therefore, to get a sorted version of y, we call:
y[o] # see also sort(y)

## [1] 10 20 30 40 50

We can also obtain the 3 largest elements by calling:
y[order(y, decreasing=TRUE)[1:3]]

## [1] 50 40 30

C.5.2 SubsettingwithNegative Indices
Subsettingwith a vector of negative indices, excludes the elements at given positions:
x[-1] # all but the first

## [1] 20 30 40 50 60 70 80 90 100

x[-(1:3)]

## [1] 40 50 60 70 80 90 100

x[-c(1:3, 5, 8)]

## [1] 40 60 70 90 100

C.5.3 Subsettingwith Logical Vectors
Wemay also subset a vector 𝒙 of length 𝑛with a logical vector 𝒍 also of length 𝑛. The
𝑖-th element, 𝑥𝑖, will be extracted if and only if the corresponding 𝑙𝑖 is true.
x[c(TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, TRUE, FALSE)]

## [1] 10 50 70 80 100

This gets along nicelywith comparison operators that yield logical vectors on output.
x>50

## [1] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE



294 LightweightMachine Learning Classics with R

x[x>50] # select elements in x that are greater than 50

## [1] 60 70 80 90 100

x[x<30 | x>70]

## [1] 10 20 80 90 100

x[x<max(x)] # getting rid of the greatest element

## [1] 10 20 30 40 50 60 70 80 90

x[x > min(x) & x < max(x)] # return all but the smallest and greatest one

## [1] 20 30 40 50 60 70 80 90

Of course, e.g., x[x<max(x)] returns a new, independent object. In order to remove
the greatest element in x permanently, we can write x <- x[x<max(x)].

C.5.4 Replacing Elements
Note that the three above vector indexing schemes (positive, negative, logical in-
dices) allow for replacing specific elements with new values.
x[-1] <- 10000

x

## [1] 10 10000 10000 10000 10000 10000 10000 10000 10000 10000

x[-(1:7)] <- c(1, 2, 3)

x

## [1] 10 10000 10000 10000 10000 10000 10000 1 2 3

C.5.5 Other Functions
head() and tail() return, respectively, a few (6 by default) first and last elements of
a vector.
head(x) # head(x, 6)

## [1] 10 10000 10000 10000 10000 10000

tail(x, 3)

## [1] 1 2 3

Sometimes the which() function can come in handy. For a given logical vector, it
returns all the indices where TRUE elements are stored.
which(c(TRUE, FALSE, TRUE, TRUE, FALSE, FALSE, TRUE))

## [1] 1 3 4 7
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print(y) # recall

## [1] 50 30 10 20 40

which(y>30)

## [1] 1 5

Note that y[y>70] gives the same result as y[which(y>70)] but is faster (because it
involves less operations).

which.min() and which.max() return the index of the smallest and the largest ele-
ment, respectively:
which.min(y) # where is the minimum?

## [1] 3

which.max(y)

## [1] 1

y[which.min(y)] # min(y)

## [1] 10

is.na() indicates which elements are missing values (NAs):
z <- c(1, 2, NA, 4, NA, 6)

is.na(z)

## [1] FALSE FALSE TRUE FALSE TRUE FALSE

Therefore, to remove them from z permanently, we can write (compare na.omit(),
see also is.finite()):
(z <- z[!is.na(z)])

## [1] 1 2 4 6

C.6 NamedVectors
C.6.1 CreatingNamedVectors
Vectors in R can be named – each element can be assigned a string label.
x <- c(20, 40, 99, 30, 10)

names(x) <- c("a", "b", "c", "d", "e")

x # a named vector
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## a b c d e

## 20 40 99 30 10

Other ways to create named vectors include:
c(a=1, b=2, c=3)

## a b c

## 1 2 3

structure(1:3, names=c("a", "b", "c"))

## a b c

## 1 2 3

For instance, the summary() function returns a named vector:
summary(x) # NAMED vector, we don't want this here yet

## Min. 1st Qu. Median Mean 3rd Qu. Max.

## 10.0 20.0 30.0 39.8 40.0 99.0

This gives the minimum, 1st quartile (25%-quantile), Median (50%-quantile), arit-
metic mean, 3rd quartile (75%-quantile) andmaximum.

Note that x is still a numeric vector, we can performvarious operations on it as usual:
sum(x)

## [1] 199

x[x>3]

## a b c d e

## 20 40 99 30 10

Names can be dropped by calling:
unname(x)

## [1] 20 40 99 30 10

as.numeric(x) # we need to know the type of x though

## [1] 20 40 99 30 10

C.6.2 SubsettingNamedVectorswith Character String Indices
It turns out that extracting elements from a named vector can also be performed by
means of a vector of character string indices:
x[c("a", "d", "b")]

## a d b
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## 20 30 40

summary(x)[c("Median", "Mean")]

## Median Mean

## 30.0 39.8

C.7 Factors
Factors are special kinds of vectors that are frequently used to store qualitative data,
e.g., species, groups, types. Factors are convenient in situationswherewehavemany
observations, but the number of distinct (unique) values is relatively small.

Since R 4.0, the global option stringsAsFactors defaults to FALSE. Be-
fore that, functions such as data.frame() and read.csv()used to con-
vert character vectors to factors automatically, which could lead to
someunpleasant, hard tofindbugs. Luckily, this is no longer the case.
However, factor objects are still useful.

C.7.1 Creating Factors
For example, the following character vector:
(col <- sample(c("blue", "red", "green"), replace=TRUE, 10))

## [1] "green" "green" "green" "red" "green" "red" "red" "red"

## [9] "green" "blue"

can be converted to a factor by calling:
(fcol <- factor(col))

## [1] green green green red green red red red green blue

## Levels: blue green red

Note how different is the way factors are printed out on the console.

C.7.2 Levels
We can easily obtain the list unique labels:
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levels(fcol)

## [1] "blue" "green" "red"

Those can be re-encoded by calling:
levels(fcol) <- c("b", "g", "r")

fcol

## [1] g g g r g r r r g b

## Levels: b g r

To create a contingency table (in the form of a named numeric vector, giving how
many values are at each factor level), we call:
table(fcol)

## fcol

## b g r

## 1 5 4

C.7.3 Internal Representation (*)
Factors have a look-and-feel of character vectors, however, internally they are rep-
resented as integer sequences.
class(fcol)

## [1] "factor"

mode(fcol)

## [1] "numeric"

as.numeric(fcol)

## [1] 2 2 2 3 2 3 3 3 2 1

These are always integers from 1 to M inclusive, where M is the number of levels.Their
meaning is given by the levels() function: in the example above, themeaning of the
codes 1, 2, 3 is, respectively, b, g, r.

If we wished to generate a factor with a specific order of labels, we could call:
factor(col, levels=c("red", "green", "blue"))

## [1] green green green red green red red red green blue

## Levels: red green blue

We can also assign different labels upon creation of a factor:
factor(col, levels=c("red", "green", "blue"), labels=c("r", "g", "b"))
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## [1] g g g r g r r r g b

## Levels: r g b

Knowing how factors are represented is important when we deal with factors that
are built around data that look like numeric. This is because their conversion to nu-
meric gives the internal codes, not the actual values:
(f <- factor(c(1, 3, 0, 1, 4, 0, 0, 1, 4)))

## [1] 1 3 0 1 4 0 0 1 4

## Levels: 0 1 3 4

as.numeric(f) # not necessarily what we want here

## [1] 2 3 1 2 4 1 1 2 4

as.numeric(as.character(f)) # much better

## [1] 1 3 0 1 4 0 0 1 4

Moreover, that idea is labour-saving in contexts such as plotting of data that
are grouped into different classes. For instance, here is a scatter plot for the
Sepal.Length and Petal.Width variables in the iris dataset (which is an object of
type data.frame, see below). Flowers are of different Species, andwewish to indicate
which point belongs to which class:
which_preview <- c(1, 11, 51, 69, 101) # indexes we show below

iris$Sepal.Length[which_preview]

## [1] 5.1 5.4 7.0 6.2 6.3

iris$Petal.Width[which_preview]

## [1] 0.2 0.2 1.4 1.5 2.5

iris$Species[which_preview]

## [1] setosa setosa versicolor versicolor virginica

## Levels: setosa versicolor virginica

as.numeric(iris$Species)[which_preview]

## [1] 1 1 2 2 3

plot(iris$Sepal.Length, # x (it's a vector)

iris$Petal.Width, # y (it's a vector)

col=as.numeric(iris$Species), # colours

pch=as.numeric(iris$Species)

)

Theabove (see Figure C.4) was possible because the Species column is a factor object
with:
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Figure C.4: as.numeric() on factors can be used to create different plotting styles

levels(iris$Species)

## [1] "setosa" "versicolor" "virginica"

and the meaning of pch of 1, 2, 3, … is “circle”, “triangle”, “plus”, …, respectively.
What’s more, there’s a default palette that maps consecutive integers to different
colours:
palette()

## [1] "black" "#DF536B" "#61D04F" "#2297E6" "#28E2E5" "#CD0BBC"

## [7] "#F5C710" "gray62"

Hence, black circles mark irises from the 1st class, i.e., “setosa”.

C.8 Lists
Numeric, logical and character vectors are atomic objects – each component is of the
same type. Let’s take a look at what happens when we create an atomic vector out of
objects of different types:
c("nine", FALSE, 7, TRUE)

## [1] "nine" "FALSE" "7" "TRUE"
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c(FALSE, 7, TRUE, 7)

## [1] 0 7 1 7

In each case, we get an object of the most “general” type which is able to represent
our data.

On the other hand, R lists are generalised vectors. They can consist of arbitrary R ob-
jects, possibly of mixed types – also other lists.

C.8.1 Creating Lists
Most commonly, we create a generalised vector by calling the list() function.
(l <- list(1:5, letters, runif(3)))

## [[1]]

## [1] 1 2 3 4 5

##

## [[2]]

## [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q"

## [18] "r" "s" "t" "u" "v" "w" "x" "y" "z"

##

## [[3]]

## [1] 0.95683 0.45333 0.67757

mode(l)

## [1] "list"

class(l)

## [1] "list"

length(l)

## [1] 3

There’s a more compact way to print a list on the console:
str(l)

## List of 3

## $ : int [1:5] 1 2 3 4 5

## $ : chr [1:26] "a" "b" "c" "d" ...

## $ : num [1:3] 0.957 0.453 0.678

We can also convert an atomic vector to a list by calling:
as.list(1:3)

## [[1]]
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## [1] 1

##

## [[2]]

## [1] 2

##

## [[3]]

## [1] 3

C.8.2 Named Lists
List, like other vectors, may be assigned a names attribute.
names(l) <- c("a", "b", "c")

l

## $a

## [1] 1 2 3 4 5

##

## $b

## [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q"

## [18] "r" "s" "t" "u" "v" "w" "x" "y" "z"

##

## $c

## [1] 0.95683 0.45333 0.67757

C.8.3 Subsetting and Extracting FromLists
Applying a square brackets operator creates a sub-list, which is of type list as well.
l[-1]

## $b

## [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q"

## [18] "r" "s" "t" "u" "v" "w" "x" "y" "z"

##

## $c

## [1] 0.95683 0.45333 0.67757

l[c("a", "c")]

## $a

## [1] 1 2 3 4 5

##

## $c

## [1] 0.95683 0.45333 0.67757

l[1]
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## $a

## [1] 1 2 3 4 5

Note in the 3rd case we deal with a list of length one, not a numeric vector.

To extract (dig into) a particular (single) element, we use double square brackets:
l[[1]]

## [1] 1 2 3 4 5

l[["c"]]

## [1] 0.95683 0.45333 0.67757

The latter can equivalently be written as:
l$c

## [1] 0.95683 0.45333 0.67757

C.8.4 CommonOperations
Lists, because of their generality (they can store any kind of object), have few dedic-
ated operations. In particular, it neither makes sense to add, multiply, … two lists
together nor to aggregate them.

However, if we wish to run some operation on each element, we can call list-apply:
(k <- list(x=runif(5), y=runif(6), z=runif(3))) # a named list

## $x

## [1] 0.57263 0.10292 0.89982 0.24609 0.04206

##

## $y

## [1] 0.32792 0.95450 0.88954 0.69280 0.64051 0.99427

##

## $z

## [1] 0.65571 0.70853 0.54407

lapply(k, mean)

## $x

## [1] 0.37271

##

## $y

## [1] 0.74992

##

## $z

## [1] 0.6361
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The above computes themean of each of the three numeric vectors stored inside list
k. Moreover:
lapply(k, range)

## $x

## [1] 0.04206 0.89982

##

## $y

## [1] 0.32792 0.99427

##

## $z

## [1] 0.54407 0.70853

The built-in function range(x) returns c(min(x), max(x)).

unlist() tries (it might not always be possible) to unwind a list to a simpler, atomic
form:
unlist(lapply(k, mean))

## x y z

## 0.37271 0.74992 0.63610

Moreover, split(x, f) classifies elements in a vector x into subgroups defined by a
factor (or an object coercible to) of the same length.
x <- c( 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

f <- c("a", "b", "a", "a", "c", "b", "b", "a", "a", "b")

split(x, f)

## $a

## [1] 1 3 4 8 9

##

## $b

## [1] 2 6 7 10

##

## $c

## [1] 5

This is very useful when combined with lapply() and unlist(). For instance, here
are the mean sepal lengths for each of the three flower species in the famous iris
dataset.
unlist(lapply(split(iris$Sepal.Length, iris$Species), mean))

## setosa versicolor virginica

## 5.006 5.936 6.588

By the way, if we take a look at the documentation of ?lapply, we will note that that
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this function is defined as lapply(X, FUN, ...). Here ... denotes the optional ar-
guments that will be passed to FUN.

In other words, lapply(X, FUN, ...) returns a list Y of length length(X) such that
Y[[i]] <- FUN(X[[i]], ...) for each i. For example, mean() has an additional argu-
ment na.rm that aims to remove missing values from the input vector. Compare the
following:
t <- list(1:10, c(1, 2, NA, 4, 5))

unlist(lapply(t, mean))

## [1] 5.5 NA

unlist(lapply(t, mean, na.rm=TRUE))

## [1] 5.5 3.0

Of course, we can always pass a custom (self-made) function object as well:
min_mean_max <- function(x) {

# the last expression evaluated in the function's body

# gives its return value:

c(min(x), mean(x), max(x))

}

lapply(k, min_mean_max)

## $x

## [1] 0.04206 0.37271 0.89982

##

## $y

## [1] 0.32792 0.74992 0.99427

##

## $z

## [1] 0.54407 0.63610 0.70853

or, more concisely (we can skip the curly braces here – they are normally used to
groupmany expressions into one; also, if we don’t plan to re-use the function again,
there’s no need to give it a name):
lapply(k, function(x) c(min(x), mean(x), max(x)))

## $x

## [1] 0.04206 0.37271 0.89982

##

## $y

## [1] 0.32792 0.74992 0.99427

##

## $z

## [1] 0.54407 0.63610 0.70853
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C.9 Further Reading
Recommended further reading: (Venables et al. 2021)

Other: (Deisenroth et al. 2020), (Peng 2019), (Wickham&Grolemund 2017)



D
Matrix Algebra in R

These lecture notes are distributed in the hope that theywill be useful.
Any bug reports are appreciated.

Vectors are one-dimensional objects – they represent “flat” sequences of values.
Matrices, on the other hand, are two-dimensional – they represent tabular data,
where values aligned into rows and columns. Matrices (and their extensions – data
frames, which we’ll cover in the next chapter) are predominant in data science,
where objects are typically represented by means of feature vectors.

Below are some examples of structured datasets in matrix forms.
head(as.matrix(iris[,1:4]))

## Sepal.Length Sepal.Width Petal.Length Petal.Width

## [1,] 5.1 3.5 1.4 0.2

## [2,] 4.9 3.0 1.4 0.2

## [3,] 4.7 3.2 1.3 0.2

## [4,] 4.6 3.1 1.5 0.2

## [5,] 5.0 3.6 1.4 0.2

## [6,] 5.4 3.9 1.7 0.4

WorldPhones

## N.Amer Europe Asia S.Amer Oceania Africa Mid.Amer

## 1951 45939 21574 2876 1815 1646 89 555

## 1956 60423 29990 4708 2568 2366 1411 733

## 1957 64721 32510 5230 2695 2526 1546 773

## 1958 68484 35218 6662 2845 2691 1663 836

## 1959 71799 37598 6856 3000 2868 1769 911

## 1960 76036 40341 8220 3145 3054 1905 1008

## 1961 79831 43173 9053 3338 3224 2005 1076

307
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The aim of this chapter is to cover the most essential matrix operations, both from
the computational perspective and the mathematical one.

D.1 CreatingMatrices
D.1.1 matrix()

Amatrix can be created – amongst others – with a call to the matrix() function.
(A <- matrix(c(1, 2, 3, 4, 5, 6), byrow=TRUE, nrow=2))

## [,1] [,2] [,3]

## [1,] 1 2 3

## [2,] 4 5 6

class(A)

## [1] "matrix" "array"

Given anumeric vector of length 6,we’ve askedR to convert to anumericmatrixwith
2 rows (the nrow argument).Thenumber of columnshas beendeduced automatically
(otherwise, we would additionally have to pass ncol=3 to the function).

Using mathematical notation, above we have defined𝐀 ∈ ℝ2×3:

𝐀 = [ 𝑎1,1 𝑎1,2 𝑎1,3
𝑎2,1 𝑎2,2 𝑎2,3

] = [ 1 2 3
4 5 6 ]

We can fetch the size of the matrix by calling:
dim(A) # number of rows, number of columns

## [1] 2 3

We can also “promote” a “flat” vector to a column vector, i.e., a matrix with one
column by calling:
as.matrix(1:3)

## [,1]

## [1,] 1

## [2,] 2

## [3,] 3
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D.1.2 Stacking Vectors
Other ways to create a matrix involve stacking a couple of vectors of equal lengths
along each other:
rbind(1:3, 4:6, 7:9) # row bind

## [,1] [,2] [,3]

## [1,] 1 2 3

## [2,] 4 5 6

## [3,] 7 8 9

cbind(1:3, 4:6, 7:9) # column bind

## [,1] [,2] [,3]

## [1,] 1 4 7

## [2,] 2 5 8

## [3,] 3 6 9

These functions also allow for adding new rows/columns to existing matrices:
rbind(A, c(-1, -2, -3))

## [,1] [,2] [,3]

## [1,] 1 2 3

## [2,] 4 5 6

## [3,] -1 -2 -3

cbind(A, c(-1, -2))

## [,1] [,2] [,3] [,4]

## [1,] 1 2 3 -1

## [2,] 4 5 6 -2

D.1.3 BeyondNumericMatrices
Note that logical matrices are possible as well. For instance, knowing that compar-
ison such as < and == are performed elementwise also in the case ofmatrices, we can
obtain:
A >= 3

## [,1] [,2] [,3]

## [1,] FALSE FALSE TRUE

## [2,] TRUE TRUE TRUE

Moreover, althoughmuchmore rarely used, we can define character matrices:
matrix(LETTERS[1:12], ncol=6)

## [,1] [,2] [,3] [,4] [,5] [,6]

## [1,] "A" "C" "E" "G" "I" "K"
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## [2,] "B" "D" "F" "H" "J" "L"

D.1.4 NamingRows and Columns
Just like vectors could be equipped with names attribute:
c(a=1, b=2, c=3)

## a b c

## 1 2 3

matrices can be assigned row and column labels in the form of a list of two character
vectors:
dimnames(A) <- list(

c("a", "b"), # row labels

c("x", "y", "z") # column labels

)

A

## x y z

## a 1 2 3

## b 4 5 6

D.1.5 OtherMethods
Theread.table() (and its special case,read.csv()), canbeused to readamatrix from
a text file. We will cover it in the next chapter, because technically it returns a data
frame object (which we can convert to a matrix with a call to as.matrix()).

outer() applies a given (vectorised) function on each pair of elements from two vec-
tors, forming a two-dimensional “grid”.More precisely outer(x, y, f, ...) returns
a matrix 𝐙with length(x) rows and length(y) columns such that 𝑧𝑖,𝑗 = 𝑓 (𝑥𝑖, 𝑦𝑗, ...),
where ... are optional further arguments to f.
outer(c(1, 10, 100), 1:5, "*") # apply the multiplication operator

## [,1] [,2] [,3] [,4] [,5]

## [1,] 1 2 3 4 5

## [2,] 10 20 30 40 50

## [3,] 100 200 300 400 500

outer(c("A", "B"), 1:8, paste, sep="-") # concatenate strings

## [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]

## [1,] "A-1" "A-2" "A-3" "A-4" "A-5" "A-6" "A-7" "A-8"

## [2,] "B-1" "B-2" "B-3" "B-4" "B-5" "B-6" "B-7" "B-8"

simplify2array() is an extension of the unlist() function. Given a list of vectors,
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each of length one, it will return an “unlisted” vector. However, if a list of equisized
vectors of greater lengths is given, these will be converted to a matrix.
simplify2array(list(1, 11, 21))

## [1] 1 11 21

simplify2array(list(1:3, 11:13, 21:23))

## [,1] [,2] [,3]

## [1,] 1 11 21

## [2,] 2 12 22

## [3,] 3 13 23

simplify2array(list(1, 11:12, 21:23)) # no can do

## [[1]]

## [1] 1

##

## [[2]]

## [1] 11 12

##

## [[3]]

## [1] 21 22 23

sapply(...) is a nice application of the above, meaning sim-

plify2array(lapply(...)).
sapply(split(iris$Sepal.Length, iris$Species), mean)

## setosa versicolor virginica

## 5.006 5.936 6.588

sapply(split(iris$Sepal.Length, iris$Species), summary)

## setosa versicolor virginica

## Min. 4.300 4.900 4.900

## 1st Qu. 4.800 5.600 6.225

## Median 5.000 5.900 6.500

## Mean 5.006 5.936 6.588

## 3rd Qu. 5.200 6.300 6.900

## Max. 5.800 7.000 7.900

Of course, custom functions can also be applied:
min_mean_max <- function(x) {

# returns a named vector with three elements

# (note that the last expression in a function's body

# is its return value)

c(min=min(x), mean=mean(x), max=max(x))
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}

sapply(split(iris$Sepal.Length, iris$Species), min_mean_max)

## setosa versicolor virginica

## min 4.300 4.900 4.900

## mean 5.006 5.936 6.588

## max 5.800 7.000 7.900

Lastly, table(x, y) creates a contingency matrix that counts the number of unique
pairs of corresponding elements from two vectors of equal lengths.
library("titanic") # data on the passengers of the RMS Titanic

table(titanic_train$Survived)

##

## 0 1

## 549 342

table(titanic_train$Sex)

##

## female male

## 314 577

table(titanic_train$Survived, titanic_train$Sex)

##

## female male

## 0 81 468

## 1 233 109

D.1.6 Internal Representation (*)
Note that by setting byrow=TRUE in a call to the matrix() function above, we are read-
ing the elements of the input vector in the row-wise (row-major) fashion.Thedefault
is the column-major order, which might be a little unintuitive for some of us.
A <- matrix(c(1, 2, 3, 4, 5, 6), ncol=3, byrow=TRUE)

B <- matrix(c(1, 2, 3, 4, 5, 6), ncol=3) # byrow=FALSE

It turns out that is exactly the order in which the matrix is stored internally. Under
the hood, it is an ordinary numeric vector:
mode(B) # == mode(A)

## [1] "numeric"

length(B) # == length(A)

## [1] 6
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as.numeric(A)

## [1] 1 4 2 5 3 6

as.numeric(B)

## [1] 1 2 3 4 5 6

Also note that we can create a different view on the same underlying data vector:
dim(A) <- c(3, 2) # 3 rows, 2 columns

A

## [,1] [,2]

## [1,] 1 5

## [2,] 4 3

## [3,] 2 6

dim(B) <- c(3, 2) # 3 rows, 2 columns

B

## [,1] [,2]

## [1,] 1 4

## [2,] 2 5

## [3,] 3 6

D.2 CommonOperations
D.2.1 Matrix Transpose
Thematrix transpose is denoted with𝐀𝑇 :
t(A)

## [,1] [,2] [,3]

## [1,] 1 4 2

## [2,] 5 3 6

Hence, 𝐁 = 𝐀𝑇 is a matrix such that 𝑏𝑖,𝑗 = 𝑎𝑗,𝑖.

In other words, in the transposed matrix, rows become columns and columns be-
come rows. For example:

𝐀 = [ 𝑎1,1 𝑎1,2 𝑎1,3
𝑎2,1 𝑎2,2 𝑎2,3

] 𝐀𝑇 = ⎡⎢⎢
⎣

𝑎1,1 𝑎2,1
𝑎1,2 𝑎2,2
𝑎1,3 𝑎2,3

⎤⎥⎥
⎦
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D.2.2 Matrix-Scalar Operations
Operations such as 𝑠𝐀 (multiplication of a matrix by a scalar), −𝐀, 𝑠 + 𝐀 etc. are
applied on each element of the input matrix:
(A <- matrix(c(1, 2, 3, 4, 5, 6), byrow=TRUE, nrow=2))

## [,1] [,2] [,3]

## [1,] 1 2 3

## [2,] 4 5 6

(-1)*A

## [,1] [,2] [,3]

## [1,] -1 -2 -3

## [2,] -4 -5 -6

In R, the same rule holds when we compute other operations (despite the fact that,
mathematically, e.g.,𝐀2 or𝐀 ≥ 0might have a different meaning):
A^2 # this is not A-matrix-multiply-A, see below

## [,1] [,2] [,3]

## [1,] 1 4 9

## [2,] 16 25 36

A>=3

## [,1] [,2] [,3]

## [1,] FALSE FALSE TRUE

## [2,] TRUE TRUE TRUE

D.2.3 Matrix-Matrix Operations
If𝐀,𝐁 ∈ ℝ𝑛×𝑝 are twomatrices of identical sizes, then𝐀+𝐁 and𝐀−𝐁 are under-
stood elementwise, i.e., they result in𝐂 ∈ ℝ𝑛×𝑝 such that 𝑐𝑖,𝑗 = 𝑎𝑖,𝑗 ± 𝑏𝑖,𝑗.
A-A

## [,1] [,2] [,3]

## [1,] 0 0 0

## [2,] 0 0 0

In R (but not when we use mathematical notation), all other arithmetic, logical and
comparison operators are also applied in an elementwise fashion.
A*A

## [,1] [,2] [,3]

## [1,] 1 4 9

## [2,] 16 25 36
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(A>2) & (A<=5)

## [,1] [,2] [,3]

## [1,] FALSE FALSE TRUE

## [2,] TRUE TRUE FALSE

D.2.4 MatrixMultiplication (*)
Mathematically, 𝐀𝐁 denotes thematrix multiplication. It is a very different opera-
tion to the elementwise multiplication.
(A <- rbind(c(1, 2), c(3, 4)))

## [,1] [,2]

## [1,] 1 2

## [2,] 3 4

(I <- rbind(c(1, 0), c(0, 1)))

## [,1] [,2]

## [1,] 1 0

## [2,] 0 1

A %*% I # matrix multiplication

## [,1] [,2]

## [1,] 1 2

## [2,] 3 4

This is not the same as the elementwise A*I.

Matrixmultiplication can only be performedon twomatrices of compatible sizes– the
number of columns in the left matrix must match the number of rows in the right
operand.

Given 𝐀 ∈ ℝ𝑛×𝑝 and 𝐁 ∈ ℝ𝑝×𝑚, their multiply is a matrix 𝐂 = 𝐀𝐁 ∈ ℝ𝑛×𝑚 such
that 𝑐𝑖,𝑗 is the dot product of the 𝑖-th row in𝐀 and the 𝑗-th column in 𝐁:

𝑐𝑖,𝑗 = 𝐚𝑖,⋅ ⋅ 𝐛⋅,𝑗 =
𝑝

∑
𝑘=1

𝑎𝑖,𝑘𝑏𝑘,𝑗

for 𝑖 = 1, … , 𝑛 and 𝑗 = 1, … , 𝑚.

Exercise D.1 Multiply a few simple matrices of sizes 2 × 2, 2 × 3, 3 × 2 etc. using pen and
paper and checking the results in R.

Also remember that, mathematically, squaring a matrix is done in terms of matrix
multiplication, i.e.,𝐀2 = 𝐀𝐀. It can only be performed on squarematrices, i.e., ones
with the same number of rows and columns.This is again different thanR’s element-
wise A^2.
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Note that 𝐀𝑇𝐀 gives the matrix that consists of the dot products of all the pairs of
columns in𝐀.
crossprod(A) # same as t(A) %*% A

## [,1] [,2]

## [1,] 10 14

## [2,] 14 20

In one of the chapters on Regression, we note that the Pearson linear correlation
coefficient can be beautifully expressed this way.

D.2.5 Aggregation of Rows and Columns
The apply() function may be used to transform or summarise individual rows or
columns in a matrix. More precisely:

• apply(A, 1, f) applies a given function 𝑓 on each row of𝐀.
• apply(A, 2, f) applies a given function 𝑓 on each column of𝐀.
Usually, either 𝑓 returns a single value (when we wish to aggregate all the elements
in a row/column) or returns the same number of values (when wewish to transform
a row/column).The latter case is covered in the next subsection.

Let’s compute the mean of each row and column in A:
(A <- matrix(1:18, byrow=TRUE, nrow=3))

## [,1] [,2] [,3] [,4] [,5] [,6]

## [1,] 1 2 3 4 5 6

## [2,] 7 8 9 10 11 12

## [3,] 13 14 15 16 17 18

apply(A, 1, mean) # synonym: rowMeans(A)

## [1] 3.5 9.5 15.5

apply(A, 2, mean) # synonym: colMeans(A)

## [1] 7 8 9 10 11 12

We can also fetch theminimal andmaximal value bymeans of the range() function:
apply(A, 1, range)

## [,1] [,2] [,3]

## [1,] 1 7 13

## [2,] 6 12 18

apply(A, 2, range)

## [,1] [,2] [,3] [,4] [,5] [,6]
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## [1,] 1 2 3 4 5 6

## [2,] 13 14 15 16 17 18

Of course, a custom function can be provided as well. Here we compute the min-
imum, average andmaximum of each row:
apply(A, 1, function(row) c(min(row), mean(row), max(row)))

## [,1] [,2] [,3]

## [1,] 1.0 7.0 13.0

## [2,] 3.5 9.5 15.5

## [3,] 6.0 12.0 18.0

D.2.6 Vectorised Special Functions
The special functions mentioned in the previous chapter, e.g., sqrt(), abs(),
round(), log(), exp(), cos(), sin(), are also performed in an elementwise manner
when applied on amatrix object.
round(1/A, 2) # rounds every element in 1/A

## [,1] [,2] [,3] [,4] [,5] [,6]

## [1,] 1.00 0.50 0.33 0.25 0.20 0.17

## [2,] 0.14 0.12 0.11 0.10 0.09 0.08

## [3,] 0.08 0.07 0.07 0.06 0.06 0.06

An example plot of the absolute values of sine and cosine functions depicted using
the matplot() function (see Figure D.1).
x <- seq(-2*pi, 6*pi, by=pi/100)

Y <- cbind(sin(x), cos(x)) # a matrix with two columns

Y <- abs(Y) # take the absolute value of every element in Y

matplot(x, Y, type="l")

D.2.7 Matrix-Vector Operations
Mathematically, there is no generally agreed upon convention defining arithmetic
operations betweenmatrices and vectors.

(*)The only exception is thematrix – vectormultiplication in the case
where an argument is a column or a row vector, i.e., in fact, a matrix.
Hence, given𝐀 ∈ ℝ𝑛×𝑝wemaywrite𝐀𝐱 only if𝐱 ∈ ℝ𝑝×1 is a column
vector. Similarly, 𝐲𝐀makes only sense whenever 𝐲 ∈ ℝ1×𝑛 is a row
vector.
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Figure D.1: Example plot with matplot()

Remark. Please take notice of the fact that we consistently discriminate between
different bold math fonts and letter cases: 𝐗 is a matrix, 𝐱 is a row or column
vector (still a matrix, but a sequence-like one) and 𝒙 is an ordinary vector (one-
dimensional sequence).

However, in R, we might sometimes wish to vectorise an arithmetic operation
between a matrix and a vector in a row- or column-wise fashion. For example, if
𝐀 ∈ ℝ𝑛×𝑝 is a matrix and𝐦 ∈ ℝ1×𝑝 is a row vector, we might want to subtract𝑚𝑖
from each element in the 𝑖-th column. Here, the apply() function comes in handy
again.

Example: to create a centred version of a givenmatrix, we need to subtract from each
element the arithmetic mean of its column.
(A <- cbind(c(1, 2), c(2, 4), c(5, 8)))

## [,1] [,2] [,3]

## [1,] 1 2 5

## [2,] 2 4 8

(m <- apply(A, 2, mean)) # same as colMeans(A)

## [1] 1.5 3.0 6.5

t(apply(A, 1, function(r) r-m)) # note the transpose here

## [,1] [,2] [,3]
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## [1,] -0.5 -1 -1.5

## [2,] 0.5 1 1.5

The above is equivalent to:
apply(A, 2, function(c) c-mean(c))

## [,1] [,2] [,3]

## [1,] -0.5 -1 -1.5

## [2,] 0.5 1 1.5

D.3 Matrix Subsetting
Example matrices:
(A <- matrix(1:12, byrow=TRUE, nrow=3))

## [,1] [,2] [,3] [,4]

## [1,] 1 2 3 4

## [2,] 5 6 7 8

## [3,] 9 10 11 12

B <- A

dimnames(B) <- list(

c("a", "b", "c"), # row labels

c("x", "y", "z", "w") # column labels

)

B

## x y z w

## a 1 2 3 4

## b 5 6 7 8

## c 9 10 11 12

D.3.1 Selecting Individual Elements
Matrices are two-dimensional structures: items are aligned in rows and columns.
Hence, to extract an element from a matrix, we will need two indices. Mathematic-
ally, given amatrix𝐀, 𝑎𝑖,𝑗 stands for the element in the 𝑖-th row and the 𝑗-th column.
The same in R:
A[1, 2] # 1st row, 2nd columns

## [1] 2
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B["a", "y"] # using dimnames == B[1,2]

## [1] 2

D.3.2 Selecting Rows and Columns
Wewill sometimes use the following notation to emphasise that amatrix𝐀 consists
of 𝑛 rows or 𝑝 columns:

𝐀 =
⎡
⎢⎢⎢
⎣

𝐚1,⋅
𝐚2,⋅

⋮
𝐚𝑛,⋅

⎤
⎥⎥⎥
⎦

= [ 𝐚⋅,1 𝐚⋅,2 ⋯ 𝐚⋅,𝑝 ] .

Here, 𝐚𝑖,⋅ is a row vector of length 𝑝, i.e., a (1 × 𝑝)-matrix:

𝐚𝑖,⋅ = [ 𝑎𝑖,1 𝑎𝑖,2 ⋯ 𝑎𝑖,𝑝 ] .

Moreover, 𝐚⋅,𝑗 is a column vector of length 𝑛, i.e., an (𝑛 × 1)-matrix:

𝐚⋅,𝑗 = [ 𝑎1,𝑗 𝑎2,𝑗 ⋯ 𝑎𝑛,𝑗 ]
𝑇

=
⎡
⎢
⎢
⎢
⎣

𝑎1,𝑗
𝑎2,𝑗
⋮

𝑎𝑛,𝑗

⎤
⎥
⎥
⎥
⎦

,

We can extract individual rows and columns from a matrix by using the following
notation:
A[1,] # 1st row

## [1] 1 2 3 4

A[,2] # 2nd column

## [1] 2 6 10

B["a",] # of course, B[1,] is still legal

## x y z w

## 1 2 3 4

B[,"y"]

## a b c

## 2 6 10
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Note that by extracting a single row/column, we get an atomic (one-dimensional)
vector. However, we can preserve the dimensionality of the output object by passing
drop=FALSE:
A[ 1, , drop=FALSE] # 1st row

## [,1] [,2] [,3] [,4]

## [1,] 1 2 3 4

A[ , 2, drop=FALSE] # 2nd column

## [,1]

## [1,] 2

## [2,] 6

## [3,] 10

B["a", , drop=FALSE]

## x y z w

## a 1 2 3 4

B[ , "y", drop=FALSE]

## y

## a 2

## b 6

## c 10

Now this is what we call proper row and column vectors!

D.3.3 Selecting Submatrices
To create a sub-block of a given matrix we pass two indexers, possibly of length
greater than one:
A[1:2, c(1, 2, 4)] # rows 1,2 columns 1,2,4

## [,1] [,2] [,3]

## [1,] 1 2 4

## [2,] 5 6 8

B[c("a", "b"), c(1, 2, 4)]

## x y w

## a 1 2 4

## b 5 6 8

A[c(1, 3), 3]

## [1] 3 11
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A[c(1, 3), 3, drop=FALSE]

## [,1]

## [1,] 3

## [2,] 11

D.3.4 Selecting Based on Logical Vectors andMatrices
We can also subset amatrix with a logical matrix of the same size.This always yields
a (flat) vector in return.
A[A>8]

## [1] 9 10 11 12

Logical vectors can also be used as indexers:
A[c(TRUE, FALSE, TRUE),] # select 1st and 3rd row

## [,1] [,2] [,3] [,4]

## [1,] 1 2 3 4

## [2,] 9 10 11 12

A[,colMeans(A)>6] # columns with means > 6

## [,1] [,2]

## [1,] 3 4

## [2,] 7 8

## [3,] 11 12

B[B[,"x"]>1 & B[,"x"]<=9,] # All rows where x is in (1, 9]

## x y z w

## b 5 6 7 8

## c 9 10 11 12

D.3.5 Selecting Based on Two-ColumnMatrices
Lastly, note that we can also index a matrix A with a 2-column matrix I, i.e., A[I].
This allows for an easy access to A[I[1,1], I[1,2]], A[I[2,1], I[2,2]], A[I[3,1],
I[3,2]], …
I <- cbind(c(1, 3, 2, 1, 2),

c(2, 3, 2, 1, 4)

)

A[I]

## [1] 2 11 6 1 8

This is exactly A[1, 2], A[3, 3], A[2, 2], A[1, 1], A[2, 4].
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Exercise D.2 It takes time togetused to thematrix indexing syntax.Executingand reflecting
on the following examples, step by step, might help clarify it:
X <- matrix(1:12, byrow=TRUE, nrow=3) # example matrix

dimnames(X)[[2]] <- c("a", "b", "c", "d") # set column names

print(X)

X[1, ] # selects the 1st row (row with index 1)

X[, 3] # selects the 3rd column

X[, "a"] # selects column named "a"

X[1, "a"] # selects the 1st row and column "a"

X[, c("a", "b", "c")] # selects 3 columns

X[, -2] # all but the 2nd column

X[X[,1] > 5, ] # selects all the rows that have the values in the 1st column greater than 5

X[X[,1]>5, c("a", "b", "c")] # as above, but return only 3 given columns

X[X[,1]>=5 & X[,1]<=10, ] # all rows where in the 1st column values are between 5 and 10

X[X[,1]>=5 & X[,1]<=10, c("a", "b", "c")] # as above, but 3 given columns

X[, c(1, "b", "d")] # incorrect, atomic vector - 1 will be converted to "1" and there is no column named "1"

D.4 Further Reading
Recommended further reading: (Venables et al. 2021)

Other: (Deisenroth et al. 2020), (Peng 2019), (Wickham&Grolemund 2017)





E
Data FrameWrangling in R

These lecture notes are distributed in the hope that theywill be useful.
Any bug reports are appreciated.

R data.frames are similar to matrices in the sense that we use them to store tabular
data. However, in data frames each column can be of different type:
head(iris)

## Sepal.Length Sepal.Width Petal.Length Petal.Width Species

## 1 5.1 3.5 1.4 0.2 setosa

## 2 4.9 3.0 1.4 0.2 setosa

## 3 4.7 3.2 1.3 0.2 setosa

## 4 4.6 3.1 1.5 0.2 setosa

## 5 5.0 3.6 1.4 0.2 setosa

## 6 5.4 3.9 1.7 0.4 setosa

head(rpart::car90, 2)

## Country Disp Disp2 Eng.Rev Front.Hd Frt.Leg.Room Frt.Shld

## Acura Integra Japan 112 1.8 2935 3.5 41.5 53.0

## Acura Legend Japan 163 2.7 2505 2.0 41.5 55.5

## Gear.Ratio Gear2 HP HP.revs Height Length Luggage

## Acura Integra 3.26 3.21 130 6000 47.5 177 16

## Acura Legend 2.95 3.02 160 5900 50.0 191 14

## Mileage Model2 Price Rear.Hd Rear.Seating RearShld

## Acura Integra NA 11950 1.5 26.5 52.0

## Acura Legend 20 24760 2.0 28.5 55.5

## Reliability Rim Sratio.m Sratio.p Steering Tank Tires

## Acura Integra Much better R14 NA 0.86 power 13.2 195/60

## Acura Legend Much better R15 NA 0.96 power 18.0 205/60

## Trans1 Trans2 Turning Type Weight Wheel.base Width

## Acura Integra man.5 auto.4 37 Small 2700 102 67

325
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## Acura Legend man.5 auto.4 42 Medium 3265 109 69

E.1 CreatingData Frames
Most frequently,wewill be creatingdata framesbasedona series of numeric, logical,
characters vectors of identical lengths.
x <- data.frame(

u=runif(5),

v=sample(c(TRUE, FALSE), 5, replace=TRUE),

w=LETTERS[1:5]

)

print(x)

## u v w

## 1 0.181517 TRUE A

## 2 0.919723 FALSE B

## 3 0.311723 FALSE C

## 4 0.064152 TRUE D

## 5 0.396422 FALSE E

Some objects, such as matrices, can easily be coerced to data frames:
(A <- matrix(1:12, byrow=TRUE, nrow=3,

dimnames=list(

NULL, # row labels

c("x", "y", "z", "w") # column labels

)))

## x y z w

## [1,] 1 2 3 4

## [2,] 5 6 7 8

## [3,] 9 10 11 12

as.data.frame(A)

## x y z w

## 1 1 2 3 4

## 2 5 6 7 8

## 3 9 10 11 12

Named lists are amongst other candidates for a meaningful conversion:
(l <- lapply(split(iris$Sepal.Length, iris$Species),

function(x) {
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c(min=min(x), median=median(x), mean=mean(x), max=max(x))

}))

## $setosa

## min median mean max

## 4.300 5.000 5.006 5.800

##

## $versicolor

## min median mean max

## 4.900 5.900 5.936 7.000

##

## $virginica

## min median mean max

## 4.900 6.500 6.588 7.900

as.data.frame(l)

## setosa versicolor virginica

## min 4.300 4.900 4.900

## median 5.000 5.900 6.500

## mean 5.006 5.936 6.588

## max 5.800 7.000 7.900

E.2 ImportingData Frames
Many interesting data frames come from external sources, such as CSV files, web
APIs, SQL databases and so on.

In particular, read.csv() (see ?read.table for a long list of tunable parameters)
imports data from plain text files organised in a tabular manner (such as comma-
separated lists of values):
f <- tempfile() # temporary file name

write.csv(x, f, row.names=FALSE) # save data frame to file

cat(readLines(f), sep="\n") # print file contents

## "u","v","w"

## 0.181517061544582,TRUE,"A"

## 0.919722604798153,FALSE,"B"

## 0.31172346835956,FALSE,"C"

## 0.0641516039613634,TRUE,"D"

## 0.396421572659165,FALSE,"E"
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read.csv(f)

## u v w

## 1 0.181517 TRUE A

## 2 0.919723 FALSE B

## 3 0.311723 FALSE C

## 4 0.064152 TRUE D

## 5 0.396422 FALSE E

Note that CSV is by far the most portable format for exchanging matrix-like ob-
jects between different programs (statistical or numeric computing environments,
spreadsheets etc.).

E.3 Data Frame Subsetting
E.3.1 EachData Frame is a List
First of all, we should note that each data frame is in fact represented as an ordinary
named list:
class(x)

## [1] "data.frame"

typeof(x)

## [1] "list"

Each column is stored as a separate list item. Having said that, we shouldn’t be sur-
prised that we already know how to perform quite a few operations on data frames:
length(x) # number of columns

## [1] 3

names(x) # column labels

## [1] "u" "v" "w"

x$u # accessing column `u` (synonym: x[["u"]])

## [1] 0.181517 0.919723 0.311723 0.064152 0.396422

x[[2]] # 2nd column

## [1] TRUE FALSE FALSE TRUE FALSE

x[c(1,3)] # a sub-data.frame
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## u w

## 1 0.181517 A

## 2 0.919723 B

## 3 0.311723 C

## 4 0.064152 D

## 5 0.396422 E

sapply(x, class) # apply class() on each column

## u v w

## "numeric" "logical" "character"

E.3.2 EachData Frame isMatrix-like
Data frames canbe considered as “generalised”matrices.Therefore, operations such
as subsetting will work in the samemanner.
dim(x) # number of rows and columns

## [1] 5 3

x[1:2,] # first two rows

## u v w

## 1 0.18152 TRUE A

## 2 0.91972 FALSE B

x[,c(1,3)] # 1st and 3rd column, synonym: x[c(1,3)]

## u w

## 1 0.181517 A

## 2 0.919723 B

## 3 0.311723 C

## 4 0.064152 D

## 5 0.396422 E

x[,1] # synonym: x[[1]]

## [1] 0.181517 0.919723 0.311723 0.064152 0.396422

x[,1,drop=FALSE] # synonym: x[1]

## u

## 1 0.181517

## 2 0.919723

## 3 0.311723

## 4 0.064152

## 5 0.396422

Take a special note of selecting rows based on logical vectors. For instance, let’s ex-
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tract all the rows from xwhere the values in the columnnamed u are between0.3 and
0.6:
x[x$u>=0.3 & x$u<=0.6, ]

## u v w

## 3 0.31172 FALSE C

## 5 0.39642 FALSE E

x[!(x[,"u"]<0.3 | x[,"u"]>0.6), ] # equivalent

## u v w

## 3 0.31172 FALSE C

## 5 0.39642 FALSE E

Moreover, subsetting based on integer vectors can be used to change the order of
rows. Here is how we can sort the rows in xwith respect to the values in column u:
(x_sorted <- x[order(x$u),])

## u v w

## 4 0.064152 TRUE D

## 1 0.181517 TRUE A

## 3 0.311723 FALSE C

## 5 0.396422 FALSE E

## 2 0.919723 FALSE B

Let’s stress that the programming style we emphasise on here is very transparent.
If we don’t understand how a complex operation is being executed, we can always
decompose it into smaller chunks that can be studied separately. For instance, as far
as the last example is concerned,we can take a look at themanual of ?order and then
inspect the result of calling order(x$u).

On a side note, we can re-set the row names by referring to:
row.names(x_sorted) <- NULL

x_sorted

## u v w

## 1 0.064152 TRUE D

## 2 0.181517 TRUE A

## 3 0.311723 FALSE C

## 4 0.396422 FALSE E

## 5 0.919723 FALSE B



Data FrameWrangling in R 331

E.4 CommonOperations
We already know how to filter rows based on logical conditions, e.g.:
iris[iris$Petal.Width >= 1.2 & iris$Petal.Width <= 1.3,

c("Petal.Width", "Species")]

## Petal.Width Species

## 54 1.3 versicolor

## 56 1.3 versicolor

## 59 1.3 versicolor

## 65 1.3 versicolor

## 72 1.3 versicolor

## 74 1.2 versicolor

## 75 1.3 versicolor

## 83 1.2 versicolor

## 88 1.3 versicolor

## 89 1.3 versicolor

## 90 1.3 versicolor

## 91 1.2 versicolor

## 93 1.2 versicolor

## 95 1.3 versicolor

## 96 1.2 versicolor

## 97 1.3 versicolor

## 98 1.3 versicolor

## 100 1.3 versicolor

iris[iris$Sepal.Length > 6.5 & iris$Species == "versicolor", ]

## Sepal.Length Sepal.Width Petal.Length Petal.Width Species

## 51 7.0 3.2 4.7 1.4 versicolor

## 53 6.9 3.1 4.9 1.5 versicolor

## 59 6.6 2.9 4.6 1.3 versicolor

## 66 6.7 3.1 4.4 1.4 versicolor

## 76 6.6 3.0 4.4 1.4 versicolor

## 77 6.8 2.8 4.8 1.4 versicolor

## 78 6.7 3.0 5.0 1.7 versicolor

## 87 6.7 3.1 4.7 1.5 versicolor

and aggregate information in individual columns:
sapply(iris[1:4], summary)

## Sepal.Length Sepal.Width Petal.Length Petal.Width

## Min. 4.3000 2.0000 1.000 0.1000

## 1st Qu. 5.1000 2.8000 1.600 0.3000
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## Median 5.8000 3.0000 4.350 1.3000

## Mean 5.8433 3.0573 3.758 1.1993

## 3rd Qu. 6.4000 3.3000 5.100 1.8000

## Max. 7.9000 4.4000 6.900 2.5000

Quite frequently, we will be interested in summarising data within subgroups gen-
erated by a list of factor-like variables.
aggregate(iris[1:4], iris[5], mean) # not: iris[, 5] !

## Species Sepal.Length Sepal.Width Petal.Length Petal.Width

## 1 setosa 5.006 3.428 1.462 0.246

## 2 versicolor 5.936 2.770 4.260 1.326

## 3 virginica 6.588 2.974 5.552 2.026

ToothGrowth[sample(nrow(ToothGrowth), 5), ] # 5 random rows

## len supp dose

## 12 16.5 VC 1.0

## 10 7.0 VC 0.5

## 17 13.6 VC 1.0

## 50 27.3 OJ 1.0

## 60 23.0 OJ 2.0

aggregate(ToothGrowth["len"], ToothGrowth[c("supp", "dose")], median)

## supp dose len

## 1 OJ 0.5 12.25

## 2 VC 0.5 7.15

## 3 OJ 1.0 23.45

## 4 VC 1.0 16.50

## 5 OJ 2.0 25.95

## 6 VC 2.0 25.95

According to the manual of the aggregate function, see help("aggregate"), the syn-
tax is aggregate(x, by, FUN), where:

• x is a data frame whose columns are to be aggregated;
• by is a list of grouping elements, each as long as the variables in the data frame x;
recall that each data frame is a list of vectors of identical lengths, so ultimately this
can also be a data frame as well; this is why we have written iris[5] and neither
iris[[5]] nor iris[, 5] (although we could have used the iris[, 5, drop=FALSE]

notation);
• FUN is an R function to be applied on each column in xwithin all groups of observa-
tions defined by by.

Further arguments can be passed to the function being called, e.g., using the nota-
tion like aggregate(X, y, mean, na.rm=TRUE).
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Exercise E.1 Below are examples using the built-in ToothGrowth data frame. As an exercise,
run all the following lines in R and study the results carefully:
ToothGrowth["supp"] # selects a specific column from a data frame; the result is still a data frame; remember that a data frame is also a list

ToothGrowth[["supp"]] # this is different - this is a vector; cannot be used in aggregate, at least not as `by` argument; extracts data from a column, is no longer a data frame

ToothGrowth[c("supp", "dose")] # selects 2 columns

aggregate(ToothGrowth["len"], ToothGrowth["supp"], mean) # computing average len in groups defined by supp

aggregate(ToothGrowth["len"], ToothGrowth[c("supp", "dose")], mean) # computing average len in groups defined by combinations of supp and dose

f <- function(x) c(MEAN=mean(x), MEDIAN=median(x)) # a custom function that returns two aggregates in form of a named (labelled) vector

aggregate(ToothGrowth["len"], ToothGrowth["supp"], f)

aggregate(ToothGrowth["len"], ToothGrowth[c("supp", "dose")], f)

Exercise E.2 We can introduce new grouping variables of any kind, for example based on
data in other columns. Run the following line by line:
ToothGrowth[["dose_1_or_2"]] <- ToothGrowth[["dose"]] >= 1.0 # note 2 square brackets now - dealing with individual columns

ToothGrowth # note the added column

aggregate(ToothGrowth["len"], ToothGrowth["dose_1_or_2"], function(x) c(MIN=min(x), MAX=max(x)))

Taking into account that split() accepts a data frame input as well, we can perform
what follows:
sapply(

# split iris into 3 sub-data.frames:

split(iris, iris[5]),

# on each sub-data.frame, apply the following function

function(df) {

# compute the mean of first four columns:

sapply(df[1:4], mean)

})

## setosa versicolor virginica

## Sepal.Length 5.006 5.936 6.588

## Sepal.Width 3.428 2.770 2.974

## Petal.Length 1.462 4.260 5.552

## Petal.Width 0.246 1.326 2.026

sapply(split(iris, iris[5]), function(df) {

c(Sepal.Length=summary(iris$Sepal.Length),

Petal.Length=summary(iris$Petal.Length)

)

})

## setosa versicolor virginica

## Sepal.Length.Min. 4.3000 4.3000 4.3000

## Sepal.Length.1st Qu. 5.1000 5.1000 5.1000

## Sepal.Length.Median 5.8000 5.8000 5.8000

## Sepal.Length.Mean 5.8433 5.8433 5.8433
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## Sepal.Length.3rd Qu. 6.4000 6.4000 6.4000

## Sepal.Length.Max. 7.9000 7.9000 7.9000

## Petal.Length.Min. 1.0000 1.0000 1.0000

## Petal.Length.1st Qu. 1.6000 1.6000 1.6000

## Petal.Length.Median 4.3500 4.3500 4.3500

## Petal.Length.Mean 3.7580 3.7580 3.7580

## Petal.Length.3rd Qu. 5.1000 5.1000 5.1000

## Petal.Length.Max. 6.9000 6.9000 6.9000

The above syntax solely relies on the building blocks that we have already mastered!
This should be very appealing to the minimalists.

Note that R packages data.table and dplyr provide us with reimplementations of
the most important functions for the processing of data frames. We only cover the
classic/base functions here, because they have existed since the very beginning of
R. These are known to every R user and are likely to work this way forever. Having
said this, we should acknowledge that some users might find dplyr or data.table
more convenient (oftentimes they are faster or handle big data better) in many con-
texts.Theproblem, though, is thatwhen facedwith less typical problems (as a future
AI/ML engineer/data scientistwe’ll be particularly exposed to them),we’ll have to fall
back to base R anyway, because it is more powerful and gives us more transferable
skills (also with regards to objects of different types, e.g., matrices). This is exactly
why we prefer functions like aggregate() subsetting like df[,], etc.

E.5 Metaprogramming and Formulas (*)
R (together with a few other programming languages such as Lisp and Scheme, that
heavily inspired R’s semantics) allows its programmers to apply some metaprogram-
ming techniques, that is, to write programs that manipulate unevaluated R expres-
sions.

For instance, take a close look at the following plot:
z <- seq(-2*pi, 2*pi, length.out=101)

plot(z, sin(z), type="l")

How did the plot() function know that we are plotting sin of z (see Figure E.1)? It
turns out that, at any time, we not only have access to the value of an object (such as
the result of evaluating sin(z), which is a vector of 101 reals) but also to the expres-
sion that was passed as a function’s argument itself.
test_meta <- function(x) {

cat("x equals to ", x, "\n") # \n == newline

cat("x stemmed from ", deparse(substitute(x)), "\n")
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Figure E.1: Metaprogramming in action: Just take a look at the Y axis label

}

test_meta(2+7)

## x equals to 9

## x stemmed from 2 + 7

This is very powerful and yet potentially very confusing to the users, because we can
write functions that don’t compute the arguments provided in awaywe expect them
to (i.e., following the R language specification). Each function can constitute a new
micro-verse, where with its own rules – we should always refer to the documenta-
tion.

For instance, consider the subset() function:
head(iris)

## Sepal.Length Sepal.Width Petal.Length Petal.Width Species

## 1 5.1 3.5 1.4 0.2 setosa

## 2 4.9 3.0 1.4 0.2 setosa

## 3 4.7 3.2 1.3 0.2 setosa

## 4 4.6 3.1 1.5 0.2 setosa

## 5 5.0 3.6 1.4 0.2 setosa

## 6 5.4 3.9 1.7 0.4 setosa

subset(iris, Sepal.Length>7.5, select=-(Sepal.Width:Petal.Width))

## Sepal.Length Species

## 106 7.6 virginica
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## 118 7.7 virginica

## 119 7.7 virginica

## 123 7.7 virginica

## 132 7.9 virginica

## 136 7.7 virginica

Neither Sepal.Length>6 nor -(Sepal.Width:Petal.Width)make sense as standalone
R expressions! However, according to the subset() function’s own rules, the former
expression is considered as a row selector (here, Sepal.Length refers to a particular
columnwithin the iris data frame).The latter plays the role of a column filter (select
everything but all the columns between…).

The data.table and dplyr packages (which are very popular) rely on this language fea-
ture all the time, so we shouldn’t be surprised when we see them.

There is one more interesting language feature that is possible thanks to metapro-
gramming. Formulas are special R objects that consist of two unevaluated R expres-
sions separated by a tilde (~). For example:
len ~ supp+dose

## len ~ supp + dose

A formula on its own has no meaning. However, many R functions accept formulas
as arguments and can interpret them in various different ways.

For example, the lm() function that fits a linear regression model, uses formulas to
specify the output and input variables:
lm(Sepal.Length~Petal.Length+Sepal.Width, data=iris)

##

## Call:

## lm(formula = Sepal.Length ~ Petal.Length + Sepal.Width, data = iris)

##

## Coefficients:

## (Intercept) Petal.Length Sepal.Width

## 2.249 0.472 0.596

On the other hand, boxplot() (see Figure E.2) allows for creating separate box-and-
whisker plots for each subgroup given by a combination of factors.
boxplot(len~supp+dose, data=ToothGrowth,

horizontal=TRUE, col="white")

The aggregate() function supports formulas too:
aggregate(cbind(Sepal.Length, Sepal.Width)~Species, data=iris, mean)

## Species Sepal.Length Sepal.Width
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Figure E.2: Example box plot created via the formula interface

## 1 setosa 5.006 3.428

## 2 versicolor 5.936 2.770

## 3 virginica 6.588 2.974

Weshould thereforemake sure thatwe knowhowevery function interactswith a for-
mula – information on that can be found in ?lm, ?boxplot, ?aggregate and so forth.

E.6 Further Reading
Recommended further reading: (Venables et al. 2021)

Other: (Peng 2019), (Wickham&Grolemund 2017)

R packages dplyr and data.table implement the most common data frame
wrangling procedures. You may find them very useful. Moreover, they are very fast
even for large data sets. Additionally, the magrittr package provides a pipe operator,
%>%, that simplifies the writing of complex, nested function calls. Do note that not
everyone is a big fan of these, however.
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