Lightweight Machine Learning Classics with R

Contents

Lis	List of Figures			
Lis	st of Ta	ables	xvii	
Pr	eface			xix
1	Simp	ole Linea	r Regression	1
	1.1	Machine	e Learning	1
		1.1.1	What is Machine Learning?	1
			Main Types of Machine Learning Problems	1
	1.2	Supervi	sed Learning	2
		1.2.1	Formalism	2
		1.2.2	Desired Outputs	4
			Types of Supervised Learning Problems	5
	1.3		Regression	8
		1.3.1	Introduction	8
			Search Space and Objective	11
	1.4		Linear Regression	14
		1.4.1	Introduction	14
		1.4.2	Solution in R	14
		1.4.3	Analytic Solution	17
			Derivation of the Solution (**)	18
	1.5	Exercise	es in R	20
		1.5.1 '	The Anscombe Quartet	20
	1.6	Outro		24
		1.6.1	Remarks	24
			Further Reading	25
2	Mult	iple Regr	ression	27
	2.1	Introdu	ction	27
		2.1.1	Formalism	27
		2.1.2	Simple Linear Regression - Recap	28
	2.2		e Linear Regression	29
		-	Problem Formulation	29
		2.2.2	Fitting a Linear Model in R	30
	2.3	Finding	the Best Model	31

Contents	5
----------	---

		2.3.1	Model Diagnostics	31
		2.3.2	Variable Selection	41
		2.3.3	Variable Transformation	49
		2.3.4	Predictive vs. Descriptive Power	50
	2.4	Exercis	ses in R	54
		2.4.1	Anscombe's Quartet Revisited	54
		2.4.2	Countries of the World – Simple models involving the GDP	
			per capita	57
		2.4.3	Countries of the World – Most correlated variables (*)	62
		2.4.4	Countries of the World – A non-linear model based on the	
			GDP per capita	64
		2.4.5	Countries of the World – A multiple regression model for the	
			per capita GDP	70
	2.5	Outro		74
		2.5.1	Remarks	74
		2.5.2	Other Methods for Regression	74
		2.5.3	Derivation of the Solution (**)	75
		2.5.4	Solution in Matrix Form (***)	76
		2.5.5	Pearson's r in Matrix Form (**)	78
		2.5.6	Further Reading	79
3	Class	sificatio	on with K-Nearest Neighbours	81
,	3.1		uction	81
	<i>J</i> .1	3.1.1	Classification Task	81
		3.1.2	Data	82
		3.1.3	Training and Test Sets	83
		3.1.4	Discussed Methods	84
	3.2	K-near	est Neighbour Classifier	85
		3.2.1	Introduction	85
		3.2.2	Example in R	85
		3.2.3	Feature Engineering	88
	3.3	Model	Assessment and Selection	91
		3.3.1	Performance Metrics	91
		3.3.2	How to Choose K for K-NN Classification?	93
		3.3.3	Training, Validation and Test sets	95
	3.4	Implen	nenting a K-NN Classifier (*)	96
		3.4.1	Factor Data Type	96
		3.4.2		97
		3.4.3	Mode	98
		3.4.4	NN Search Routines (*)	99
		3.4.5		102
	3.5	Outro		103
		3.5.1		103
		3.5.2		103
		3.5.3	Further Reading	104

4	Clas	sificatio	n with Trees and Linear Models	107
	4.1	Introd	uction	107
		4.1.1	Classification Task	107
		4.1.2	Data	108
	4.2	Decisio	on Trees	111
		4.2.1	Introduction	111
		4.2.2	Example in R	112
		4.2.3	A Note on Decision Tree Learning	116
	4.3	Binary	Logistic Regression	116
		4.3.1	Motivation	116
		4.3.2	Logistic Model	118
		4.3.3	Example in R	119
		4.3.4	Loss Function: Cross-entropy	121
	4.4	Exercis	ses in R	123
		4.4.1	EdStats – Preparing Data	123
		4.4.2	EdStats – Where Girls Are Better at Maths Than Boys?	127
		4.4.3	EdStats and World Factbook – Joining Forces	131
		4.4.4	EdStats – Fitting of Binary Logistic Regression Models	134
		4.4.5	EdStats – Variable Selection in Binary Logistic Regression (*)	137
	4.5	Outro		143
		4.5.1	Remarks	143
		4.5.2	Further Reading	143
	-1 1			
5				
5			Deep Neural Networks (*)	145
,	Shai 5.1	Introd	uction	145
5		Introd 5.1.1	uction	145 145
5	5.1	Introd [.] 5.1.1 5.1.2	uction	145 145 146
5		Introd 5.1.1 5.1.2 Multin	uction	145 145 146 148
5	5.1	Introd 5.1.1 5.1.2 Multin 5.2.1	uction	145 145 146 148 148
5	5.1	Introd 5.1.1 5.1.2 Multin 5.2.1 5.2.2	uction	145 145 146 148 148 148
5	5.1	Introd: 5.1.1 5.1.2 Multin 5.2.1 5.2.2 5.2.3	uction	145 145 146 148 148 149 150
2	5.1	Introd: 5.1.1 5.1.2 Multin 5.2.1 5.2.2 5.2.3 5.2.4	uction	145 145 146 148 148 149 150 151
5	5.1	Introd 5.1.1 5.1.2 Multin 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5	uction	145 145 146 148 148 149 150 151 153
5	5.1	Introd 5.1.1 5.1.2 Multin 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6	uction Binary Logistic Regression: Recap Data Data omial Logistic Regression Data A Note on Data Representation Data Extending Logistic Regression Data Softmax Function Data One-Hot Encoding and Decoding Data Problem Formulation in Matrix Form (**) Data	145 145 146 148 148 149 150 151 153 154
,	5.1	Introd 5.1.1 5.1.2 Multin 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 Artifici	uction Binary Logistic Regression: Recap Data Data omial Logistic Regression Data A Note on Data Representation Data Extending Logistic Regression Data Softmax Function Data One-Hot Encoding and Decoding Data Cross-entropy Revisited Problem Formulation in Matrix Form (**) Ial Neural Networks Data	145 145 146 148 148 149 150 151 153 154 155
,	5.1	Introd: 5.1.1 5.1.2 Multin 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 Artifici 5.3.1	uction Binary Logistic Regression: Recap Data Data omial Logistic Regression Data A Note on Data Representation Data Extending Logistic Regression Data Softmax Function Data One-Hot Encoding and Decoding Data Problem Formulation in Matrix Form (**) Data Antificial Neuron Data	145 145 146 148 148 149 150 151 153 154 155
,	5.1	Introd 5.1.1 5.1.2 Multin 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 Artifici 5.3.1 5.3.2	uction Binary Logistic Regression: Recap Data Data omial Logistic Regression Data A Note on Data Representation Data Extending Logistic Regression Data Softmax Function Data One-Hot Encoding and Decoding Data Problem Formulation in Matrix Form (**) Data Antificial Neuron Data Logistic Regression as a Neural Network Data	145 145 146 148 149 150 151 153 154 155 155 157
,	5.1 5.2 5.3	Introd 5.1.1 5.1.2 Multin 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 Artifici 5.3.1 5.3.2 5.3.3	uction Binary Logistic Regression: Recap Data Data omial Logistic Regression Data A Note on Data Representation Data Extending Logistic Regression Data Softmax Function Data One-Hot Encoding and Decoding Data Cross-entropy Revisited Data Problem Formulation in Matrix Form (**) Data Artificial Neuron Data Logistic Regression as a Neural Network Data Example in R Data	145 145 146 148 148 149 150 151 153 154 155 155 157 158
, ,	5.1	Introd 5.1.1 5.1.2 Multin 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 Artifici 5.3.1 5.3.2 5.3.3 Deep N	uction Binary Logistic Regression: Recap Data Data omial Logistic Regression Data A Note on Data Representation Extending Logistic Regression Softmax Function Data One-Hot Encoding and Decoding Data Problem Formulation in Matrix Form (**) Data Antificial Neuron Data Logistic Regression as a Neural Network Data Example in R Data Veural Networks Data	145 145 146 148 149 150 151 153 154 155 155 157 158 160
5	5.1 5.2 5.3	Introd 5.1.1 5.1.2 Multin 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 Artifici 5.3.1 5.3.2 5.3.3 Deep N 5.4.1	uction Binary Logistic Regression: Recap Data Data omial Logistic Regression Data A Note on Data Representation Extending Logistic Regression Softmax Function Data One-Hot Encoding and Decoding Data Cross-entropy Revisited Problem Formulation in Matrix Form (**) Ial Neural Networks Data Logistic Regression as a Neural Network Example in R Logistic Regression as a Neural Networks Introduction	145 145 146 148 149 150 151 153 154 155 155 157 158 160 160
	5.1 5.2 5.3	Introd 5.1.1 5.1.2 Multin 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 Artifici 5.3.1 5.3.2 5.3.3 Deep N 5.4.1 5.4.2	uction Binary Logistic Regression: Recap Data Data omial Logistic Regression Data A Note on Data Representation Extending Logistic Regression Softmax Function Data One-Hot Encoding and Decoding Data Cross-entropy Revisited Data Problem Formulation in Matrix Form (**) Data Logistic Regression as a Neural Network Data Logistic Regression as a Neural Network Data Example in R Data Jeural Networks Data Introduction Data	145 145 146 148 149 150 151 153 154 155 155 157 158 160 160 161
	5.1 5.2 5.3	Introd: 5.1.1 5.1.2 Multin 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 Artifici 5.3.1 5.3.2 5.3.3 Deep N 5.4.1 5.4.2 5.4.3	uction Binary Logistic Regression: Recap Data Data omial Logistic Regression Softmax A Note on Data Representation Softmax Function Extending Logistic Regression Softmax Function One-Hot Encoding and Decoding Softmax Function One-Hot Encoding and Decoding Softmax Problem Formulation in Matrix Form (**) Softmax Introduction Softmax Artificial Neuron Softmax Logistic Regression as a Neural Network Softmax Introduction Softmax Activation Functions Softmax	145 145 146 148 149 150 151 153 154 155 157 158 160 160 161 161
	5.15.25.35.4	Introd: 5.1.1 5.1.2 Multin 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 Artifici 5.3.1 5.3.2 5.3.3 Deep N 5.4.1 5.4.2 5.4.3 5.4.4	uction Binary Logistic Regression: Recap Data Data omial Logistic Regression Binary Logistic Regression A Note on Data Representation Binary Logistic Regression Extending Logistic Regression Binary Logistic Regression Softmax Function Binary Logistic Regression One-Hot Encoding and Decoding Binary Logistic Regression One-Hot Encoding and Decoding Binary Logistic Regression Oross-entropy Revisited Binary Logistic Regression Problem Formulation in Matrix Form (**) Binary Logistic Regression as a Neural Network Artificial Neuron Binary Logistic Regression as a Neural Network Logistic Regression as a Neural Network Binary Logistic Regression as a Neural Network Introduction Binary Logistic Regression Activation Functions Binary Logistic Regression Example in R - 2 Layers Binary Logistic Regression Example in R - 6 Layers Binary Logistic Regression	145 145 146 148 149 150 151 153 154 155 157 158 160 160 161 161 163
	5.1 5.2 5.3	Introd: 5.1.1 5.1.2 Multin 5.2.1 5.2.2 5.2.3 5.2.4 5.2.5 5.2.6 Artifici 5.3.1 5.3.2 5.3.3 Deep N 5.4.1 5.4.2 5.4.3 5.4.4	uction Binary Logistic Regression: Recap Data Data omial Logistic Regression Softmax A Note on Data Representation Softmax Function Extending Logistic Regression Softmax Function One-Hot Encoding and Decoding Softmax Function One-Hot Encoding and Decoding Softmax Problem Formulation in Matrix Form (**) Softmax Introduction Softmax Artificial Neuron Softmax Logistic Regression as a Neural Network Softmax Introduction Softmax Activation Functions Softmax	145 145 146 148 149 150 151 153 154 155 157 158 160 160 161 161

		5.5.2	Image Deskewing	165
		5.5.3	Summary of All the Models Considered	168
	5.6	Outro		168
		5.6.1	Remarks	168
		5.6.2	Beyond MNIST	170
		5.6.3	Further Reading	170
	_		- · · · · · · · · · · · · · · · · · · ·	
6			Optimisation with Iterative Algorithms (*)	171
	6.1		uction	171
		6.1.1	Optimisation Problems	171
		6.1.2	Example Optimisation Problems in Machine Learning	172
		6.1.3	Types of Minima and Maxima	172
		6.1.4	Example Objective over a 2D Domain	176
	6.2		ve Methods	178
		6.2.1	Introduction	178
		6.2.2	Example in R	178
		6.2.3	Convergence to Local Optima	180
		6.2.4	Random Restarts	181
	6.3	Gradie	ent Descent	183
		6.3.1	Function Gradient (*)	183
		6.3.2	Three Facts on the Gradient	184
		6.3.3	Gradient Descent Algorithm (GD)	186
		6.3.4	Example: MNIST (*)	190
		6.3.5	Stochastic Gradient Descent (SGD) (*)	193
	6.4	A Note	e on Convex Optimisation (*)	197
	6.5	Outro		199
		6.5.1	Remarks	199
		6.5.2	Further Reading	200
7	Clue	tering		201
1	7.1	•	ervised Learning	201
	/.1	7.1.1	Introduction	201
		7.1.2		201
		7.1.2		202
	F 0			
	7.2		e	205
		7.2.1	Example in R	205
		7.2.2		207
		7.2.3	Algorithms for the K-means Problem	210
	7.3		nerative Hierarchical Clustering	214
		7.3.1	Introduction	214
		7.3.2	Example in R	215
		7.3.3	Linkage Functions	216
		7.3.4	Cluster Dendrograms	218
	7.4		ses in R	219
		7.4.1	Clustering of the World Factbook	219

		7.4.2	Unbalance Dataset – K-Means Needs Multiple Starts	226
		7.4.3	Clustering of Typical 2D Benchmark Datasets	229
	7.5	Outro		234
		7.5.1	Remarks	234
		7.5.2	Further Reading	235
8	Opti		n with Genetic Algorithms (*)	237
	8.1	Introdu	uction	237
		8.1.1	Recap	237
		8.1.2	K-means Revisited	238
		8.1.3	optim() vs. kmeans()	239
	8.2	Genetic	c Algorithms	243
		8.2.1	Introduction	243
		8.2.2	Overview of the Method	245
		8.2.3	Example Implementation - GA for K-means	245
	8.3	Outro	· · · · · · · · · · · · · · · · · · ·	248
		8.3.1	Remarks	248
		8.3.2	Further Reading	250
9	Reco		ler Systems (*)	251
	9.1	Introdi	uction	251
		9.1.1	The Netflix Prize	252
		9.1.2	Main Approaches	252
		9.1.3	Formalism	253
	9.2	Collabo	prative Filtering	254
		9.2.1	Example	254
		9.2.2	Similarity Measures	255
		9.2.3	User-Based Collaborative Filtering	256
		9.2.4	Item-Based Collaborative Filtering	257
	9.3	Exercis	se: The MovieLens Dataset (*)	258
		9.3.1	Dataset	258
		9.3.2	Data Cleansing	259
		9.3.3	Item-Item Similarities	261
		9.3.4	Example Recommendations	261
		9.3.5	Clustering	262
	9.4	Outro	· · · · · · · · · · · · · · · · · · ·	264
		9.4.1	Remarks	264
		9.4.2	Further Reading	265
		<i>.</i>		209
Ар	pendi	x		265
-	-			
Α	Nota	tion Co	nvention	267
B	Setti	ng Up tł	ne R Environment	271
	B.1	Installi		271
	B.2		ng an IDE	271
			-	

	B.3		ng Recommended Packages	272
	B.4	First R	Script in RStudio	272
С	Vecto	or Algeb		275
	C.1		tion	275
	C.2	Numer	ric Vectors	277
		C.2.1	Creating Numeric Vectors	277
		C.2.2	Vector-Scalar Operations	281
		C.2.3	Vector-Vector Operations	281
		C.2.4	Aggregation Functions	283
		C.2.5	Special Functions	283
		C.2.6	Norms and Distances	284
		C.2.7	Dot Product (*)	285
		C.2.8	Missing and Other Special Values	287
	C.3	Logical	Vectors	288
		C.3.1	Creating Logical Vectors	288
		C.3.2	Logical Operations	289
		C.3.3	Comparison Operations	289
		C.3.4	Aggregation Functions	290
	C.4	Charac	ter Vectors	291
		C.4.1	Creating Character Vectors	291
		C.4.2	Concatenating Character Vectors	291
		C.4.3	Collapsing Character Vectors	292
	C.5	Vector	Subsetting	292
		C.5.1	Subsetting with Positive Indices	292
		C.5.2	Subsetting with Negative Indices	293
		C.5.3	Subsetting with Logical Vectors	293
		C.5.4	Replacing Elements	294
		C.5.5	Other Functions	294
	C.6	Named	l Vectors	295
		C.6.1	Creating Named Vectors	295
		C.6.2	Subsetting Named Vectors with Character String Indices .	296
	C.7	Factors	3	297
		C.7.1	Creating Factors	297
		C.7.2	Levels	297
		C.7.3	Internal Representation (*)	298
	C.8	Lists		300
		C.8.1	Creating Lists	301
		C.8.2	Named Lists	302
		C.8.3	Subsetting and Extracting From Lists	302
		C.8.4	Common Operations	303
	C.9	Furthe	r Reading	306
D	Matr	'ix Algeb	bra in R	307
	D.1	0	ng Matrices	308

Contents

		D.1.1	matrix())8
		D.1.2	Stacking Vectors	09
		D.1.3	Beyond Numeric Matrices	09
		D.1.4	Naming Rows and Columns	10
		D.1.5		10
		D.1.6	Internal Representation (*)	12
	D.2	Comm	on Operations	13
		D.2.1		13
		D.2.2	1 -	14
		D.2.3		14
		D.2.4	1	15
		D.2.5		16
		D.2.6	Vectorised Special Functions	17
		D.2.7	Matrix-Vector Operations	17
	D.3	Matrix	Subsetting	19
		D.3.1		19
		D.3.2	Selecting Rows and Columns	20
		D.3.3	Selecting Submatrices	21
		D.3.4	Selecting Based on Logical Vectors and Matrices 32	22
		D.3.5	Selecting Based on Two-Column Matrices	22
	D.4	Furthe	r Reading	23
Е	Data	Frame	Wrangling in R 32	25
	E.1	Creatir	ng Data Frames	26
	E.2	Import	ing Data Frames	27
	E.3	Data Fi	rame Subsetting	28
		E.3.1		28
		E.3.2	Each Data Frame is Matrix-like	29
	E.4	Comm	on Operations	31
	E.5			34
	E.6		- 14	37

References

List of Figures

1.1	Quantitative (numeric) outputs lead to regression problems	7
1.2	Quantitative outputs lead to classification tasks	7
1.3	Ordinal variables constitute ordinal regression tasks	8
1.4	A scatter plot of Rating vs. Balance	9
1.5	A scatter plot of Rating vs. Balance with clients of Balance=0 re-	
	moved	10
1.6	Probability density functions of normal distributions with different	
	standard deviations σ	11
1.7	Different polynomial models fitted to data	11
1.8	Residuals are defined as the differences between the predicted and	
	observed outputs $\hat{y}_i - y_i$	12
1.9	Three simple linear models together with the corresponding SSRs .	15
1.10	Fitted regression line	16
1.11	Fitted regression lines for the Anscombe quartet	23
1.12	Residuals vs. fitted values for the regression lines fitted to the	
	Anscombe quartet	25
2.1	Fitted regression line for the Credit dataset	29
2.2	Fitted regression plane for the Credit dataset	30
2.3	Scatter plots of Y vs. X_1 and X_2	31
2.4	A heatmap for Rating as a function of Balance and Income; greens	
	represent low credit ratings, whereas reds – high ones	32
2.5	An example boxplot	36
2.6	Box plots of the residuals for the three models studied	37
2.7	Violin plots of the residuals for the three models studied	37
2.8	Box plots of the modules of the residuals for the three models studied	38
2.9	Residuals vs. fitted outputs for the three regression models	41
2.10	Scatter plot matrix for the Credit dataset	42
2.11	Different datasets and the corresponding Pearson's <i>r</i> coefficients .	43
2.12	Polynomials of different degrees fitted to the Credit dataset	51
2.13	Synthetic data generated by means of the formula $Y = 3x^3 + 5$ (+	
	noise)	52
2.14		52
2.15	MSE on the dataset used to construct the model vs. MSE on a whole	
	range of points as function of the polynomial degree	53
2.16	Fitted regression line for ans1	55

2.17	Fitted quadratic model for ans2	56
2.18	Scatter plot for ans3	56
2.19	Scatter plot for ans3 with the outlier removed and the fitted linear model	57
2.20	A scatter plot matrix and regression lines for the 4 variables most	57
	correlated with the per capita GDP	61
2.21	Most correlated pair of variables and the invisible regression line .	65
	Histograms of the empirical distribution of the GDP per capita with	
	linear (left) and log (right) scale on the X axis	65
2.29	with human-readable X axis labels (not the logarithmic scale)	66
2.24	Linear model fitted for life expectancy vs. GDP/person	67
	Scatter plot of life expectancy vs. GDP/person with log scale on the	
	X axis	68
2.26	Linear model fitted for life expectancy vs. the logarithm of	69
2 27	GDP/person	69 70
	Scatter plot matrix for GDP, imports and exports	70 72
2.20	scatter plot matrix for GDF, imports and exports	12
3.1	A synthetic 2D dataset with the true decision boundary at $X_1 = 0$.	82
3.2	1-NN class bounds for our 2D synthetic dataset	86
3.3	3-NN class bounds for our 2D synthetic dataset	86
3.4	25-NN class bounds for our 2D synthetic dataset	87
3.5	Empirical distribution of two variables (pH on the top, fixed.acidity on the bottom) before (left) and after (right) standardising	89
3.6	Performance of <i>K</i> -nn classifiers as a function of <i>K</i> for standardised	
-	and raw data	95
3.7	K-NN regression example	105
4.1	A synthetic 2D dataset with the true decision boundary at $X_1 = 0$.	108
4.2	The simplest decision tree for the synthetic 2D dataset and the cor-	
	responding decision boundaries	111
4.3	A more complicated decision tree for the synthetic 2D dataset and	
	the corresponding decision boundaries	112
4.4	An even more complicated decision tree for the synthetic 2D dataset	
	and the corresponding decision boundaries	113
4.5	A decision tree for the wines dataset	113
4.6	A (simpler) decision tree for the wines dataset	114
4.7	A (more complex) decision tree for the wines dataset	115
4.8	Quality metrics for a binary classifier "Classify X as 1 if $f(X) > T$	
	and as $o ext{ if } f(X) \leq T^{"}$	117
4.9	The logistic sigmoid function, φ	118
4.10	The probability that a given wine is a high-alcohol one given its dens-	
	ity; black and red points denote the actual observed data points from	100
	the class 0 and 1, respectively	120

4.11	A decision tree explaining the girls_rule_maths variable	130
4.12	Another decision tree explaining the girls_rule_maths variable	131
4.13	Yet another decision tree explaining the girls_rule_maths variable	134
5.1	Example images in the MNIST database	147
5.2	Example image from the MNIST dataset	149
5.3	The less the classifier is confident about the prediction of the actually	
	true label, the greater the penalty	154
5.4	Neuron as a mathematical (black box) function; image based on: http	
	s://en.wikipedia.org/wiki/File:Neuron3.png by Egm4313.s12 at Eng-	
	lish Wikipedia, licensed under the Creative Commons Attribution-	
	Share Alike 3.0 Unported license	156
5.5	A simple model of an artificial neuron	157
5.6	Binary logistic regression	158
5.7	Multinomial logistic regression	159
5.8	Performance metrics for multinomial logistic regression on MNIST	161
5.9	A multi-layer neural network	162
5.10	Performance metrics for a 2-layer net 784-800-10 [relu] on MNIST .	163
5.11	Performance metrics for a 6-layer net 784-2500-2000-1500-1000-	
	500-10 [relu] on MNIST	165
5.12	Deskewing of the MNIST digits	166
5.13	Performance of Multinomial Logistic Regression on the deskewed	
	MNIST	168
5.14	Summary of F-measures for each classified digit and every method	169
5.15	A heat map of F-measures for each classified digit and each method	169
6.1	A function with the global minimum at $x^* = 1$	172
6.2	A function that has multiple minima	173
6.3	A function with two local minima	174
6.4	Smooth vs. non-smooth vs. noisy objective functions	175
6.5	A contour plot and a heat map of $g(x_1, x_2)$	177
6.6	Perspective plots of $g(x_1, x_2)$	177
6.7	Each plotting symbol marks a point where the objective function was	
	evaluated by the BFGS method	180
6.8	A histogram of the objective function's value at the local minimum	
	found when using a random initial guess	181
6.9	Each line segment connect a starting point to the point of BFGS's	
	convergence; note that by starting in the neighbourhood of $(0, -4)$	
	we can actually end up in any of the 4 local minima	182
6.10	Scaled radients (pink arrows) and minus gradients (blue arrows) of $a(u, u)$ at different paints	-0-
1	$g(x_1, x_2)$ at different points	186
6.11	Path taken by the gradient descent algorithm with $\eta = 0.01$	188
6.12	Path taken by the gradient descent algorithm with $\eta = 0.05$	188
6.13	Path taken by the gradient descent algorithm with $\eta=0.1$	189

6.14	Cross-entropy and accuracy on the train and test set in each iteration of SGD; batch size of 32	196
6.15	Cross-entropy and accuracy on the train and test set in each iteration	
	of SGD; batch size of 128	196
6.16	An illustration of the definition of a convex function	197
6.17	A convex and a non-convex set	198
7.1	Unsupervised learning: "But what it is exactly that I have to do here?"	201
7.2	Principal component analysis (a dimensionality reduction tech-	
	nique) applied on three features of red wines	202
7.3	(#fig:anomaly_detection) Outliers can be thought of anomalies of	
	some sort	203
7.4	NEWS FLASH! SCIENTISTS SHOWED (by writing about it) THAT	
	SOME VERY IMPORTANT THING (Iris dataset) COMES IN THREE	
	DIFFERENT FLAVOURS (by applying the 3-means clustering al-	
	gorithm)!	204
7.5	3-means clustering on a projection of the Iris dataset	206
7.6	3-means clustering (colours) vs true Iris species (shapes)	207
7.7	Cluster centres (blue dots) identified by the 3-means algorithm	209
7.8	The division of the whole space into three sets based on the proximity	
	to cluster centres (a so-called Voronoi diagram)	209
7.9	The arrows denote the cluster centres in each iteration of the Lloyd	
	algorithm	213
7.10	3-means (colours) vs. 4-means (symbols) on example data; the "circle"	
	cluster cannot decide if it likes the green or the black one more	214
7.11	Complete linkage – 4 different cuts	216
7.12	In single linkage, we find the closest pair of points; in complete link-	
	age, we seek the pair furthest away from each other; in average link-	
	age, we determine the arithmetic mean of all pairwise distances	218
7.13	3 cuts of 3 different hierarchies	219
7.14	Cluster dendrograms for the single, complete and average linkages	220
7.15	Cluster dendrogram for the World Factbook dataset – Complete link-	
	age	223
7.16	Cluster dendrogram for the World Factbook dataset – Genie al-	
	gorithm	224
7.17	3 clusters discovered by the Genie algorithm	225
7.18	(#fig:sipu_unbalance2) sipu_unbalance dataset	226
7.19	Results of K-means on the sipu_unbalance dataset	227
7.20	Results of K-means on the sipu_unbalance dataset – many more re- starts	228
7.21	Results of K-means on the sipu unbalance dataset – an educated	220
1.71	guess on the cluster centres' locations	229
7.22		229
7.22	Clustering of the wut_tsotation dataset	231
	Clustering of the wut_z3 dataset	
1.44		232

		232
	Clustering of the sipu_pathbased dataset	
7.27	Clustering of the sipu_unbalance dataset	233
8.1	(#fig:gendata_example) plot of chunk gendata_example	
8.2	plot of chunk gendata5	
8.3	Crossover	246
9.1	Cluster dendrogram for the movies	263
C.1	Uniformly vs. normally distributed random variables	
C.2	An example plot of the sine and cosine functions	
C.3	Example vectors in 2D	286
C.4	as.numeric() on factors can be used to create different plotting	
	styles	300
D.1	Example plot with matplot()	318
E.1	Metaprogramming in action: Just take a look at the Y axis label	335
E.2	Example box plot created via the formula interface	337

List of Tables

Preface

These lecture notes are distributed in the hope that they will be useful. Any bug reports are appreciated.

Copyright (C) 2020-2022, Marek Gagolewski¹.

This material is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International² License (CC BY-NC-ND 4.0).

You can access this textbook at:

- https://lmlcr.gagolewski.com/ (a browser-friendly version)
- https://lmlcr.gagolewski.com/lmlcr.pdf (PDF)
- https://github.com/gagolews/lmlcr (source code)

Aims and Scope

Machine learning has numerous exciting real-world applications, including stock market prediction, speech recognition, computer-aided medical diagnosis, content and product recommendation, anomaly detection in security camera footage, game playing, autonomous vehicle operation, and many others.

In this book we will take an unpretentious glance at the most fundamental algorithms that have stood the test of time and which form the basis for state-of-theart solutions of modern AI, which is principally (big) data-driven. We will learn how to use the R language (R Development Core Team 2021) for implementing various stages of data processing and modelling activities. For a more in-depth treatment of R, refer to this book's Appendices and, for instance, (Wickham & Grolemund 2017, Peng 2019, Venables et al. 2021).

These pages contain solid underpinnings for further studies related to statistical learning, machine learning data science, data analytics, and artificial intelligence,

¹https://www.gagolewski.com

²https://creativecommons.org/licenses/by-nc-nd/4.0/

including (Bishop 2006, Hastie et al. 2017, James et al. 2017). We will also appreciate the vital role of mathematics as a universal language for formalising data-intense problems and communicating their solutions. The book is aimed at readers who are yet to be fluent with university-level linear algebra, calculus and probability theory, such as 1st year undergrads or those who have forgotten all the maths they have learned and need a gentle, non-invasive, yet rigorous introduction to the topic. For a nice, machine learning-focused introduction to mathematics alone, see, e.g., (Deisenroth et al. 2020).

About the Author

[Marek Gagolewski][1] is currently a Senior Lecturer in Applied AI at Deakin University in Melbourne, VIC, Australia and an Associate Professor in Data Science (on long-term leave) at the Faculty of Mathematics and Information Science, Warsaw University of Technology, Poland and Systems Research Institute of the Polish Academy of Sciences.

His research interests include machine learning, data aggregation and clustering, computational statistics, mathematical modelling (science of science, sport, economics, etc.), and free (libre) data analysis software (stringi³, genieclust⁴, among others⁵).

Acknowledgements

This book has been prepared with pandoc, Markdown, and GitBook. R code chunks have been processed with knitr. A little help of bookdown, good ol' Makefiles, and shell scripts did the trick.

The following R packages are used or referred to in the text: bookdown, Cairo, DEoptim, fastcluster, FNN, genie, genieclust, gsl, hydroPSO, ISLR, keras, knitr, Matrix, microbenchmark, pdist, RColorBrewer, recommenderlab, rpart, rpart.plot, rworldmap, scatterplot3d, stringi, tensorflow, tidyr, titanic, vioplot.

³https://stringi.gagolewski.com

⁴https://genieclust.gagolewski.com

⁵https://github.com/gagolews

Simple Linear Regression

These lecture notes are distributed in the hope that they will be useful. Any bug reports are appreciated.

1.1 Machine Learning

1.1.1 What is Machine Learning?

An **algorithm** is a well-defined sequence of instructions that, for a given sequence of input arguments, yields some desired output.

In other words, it is a specific recipe for a **function**.

Developing algorithms is a tedious task.

In **machine learning**, we build and study computer algorithms that make *predictions* or *decisions* but which are not manually programmed.

Learning needs some material based upon which new knowledge is to be acquired.

In other words, we need **data**.

1.1.2 Main Types of Machine Learning Problems

Machine Learning Problems include, but are not limited to:

- **Supervised learning** for every input point (e.g., a photo) there is an associated desired output (e.g., whether it depicts a crosswalk or how many cars can be seen on it)
- **Unsupervised learning** inputs are unlabelled, the aim is to discover the underlying structure in the data (e.g., automatically group customers w.r.t. common behavioural patterns)

- **Semi-supervised learning** some inputs are labelled, the others are not (definitely a cheaper scenario)
- **Reinforcement learning** learn to act based on a feedback given after the actual decision was made (e.g., learn to play The Witcher 7 by testing different hypotheses what to do to survive as long as possible)

1.2 Supervised Learning

1.2.1 Formalism

Let $\mathbf{X} = \{\mathfrak{X}_1, \dots, \mathfrak{X}_n\}$ be an input sample ("a database") that consists of *n* objects.

Most often we assume that each object \mathfrak{X}_i is represented using p numbers for some p.

We denote this fact as $\mathfrak{X}_i \in \mathbb{R}^p$ (it is a *p*-dimensional real vector or a sequence of *p* numbers or a point in a *p*-dimensional real space or an element of a real *p*-space etc.).

If we have "complex" objects on input, we can always try representing them as **feature vectors** (e.g., come up with numeric attributes that best describe them in a task at hand).

Exercise 1.1 Consider the following problems:

- 1. How would you represent a patient in a clinic?
- 2. How would you represent a car in an insurance company's database?
- 3. How would you represent a student in an university?

Of course, our setting is *abstract* in the sense that there might be different realities *hidden* behind these symbols.

This is what maths is for – creating *abstractions* or *models* of complex entities/phenomena so that they can be much more easily manipulated or understood. This is very powerful – spend a moment contemplating how many real-world situations fit into our framework.

This also includes image/video data, e.g., a 1920×1080 pixel image can be "unwound" to a "flat" vector of length 2,073,600.

(*) There are some algorithms such as Multidimensional Scaling, Locally Linear Embedding, IsoMap etc. that can do that automagically.

In cases such as this we say that we deal with structured (tabular) data

- **X** can be written as an $(n \times p)$ -matrix:

$$\mathbf{X} = \begin{bmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,p} \\ x_{2,1} & x_{2,2} & \cdots & x_{2,p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n,1} & x_{n,2} & \cdots & x_{n,p} \end{bmatrix}$$

Mathematically, we denote this as $\mathbf{X} \in \mathbb{R}^{n \times p}$.

Remark. Structured data == think: Excel/Calc spreadsheets, SQL tables etc.

For an example, consider the famous Fisher's Iris flower dataset, see ?iris in R and https://en.wikipedia.org/wiki/Iris_flower_data_set.

```
X <- iris[1:6, 1:4] # first 6 rows and 4 columns
Х
           # or: print(X)
##
     Sepal.Length Sepal.Width Petal.Length Petal.Width
## 1
                5.1
                             3.5
                                            1.4
                                                          0.2
               4.9
                             3.0
                                            1.4
                                                          0.2
## 2
               4.7
                             3.2
                                            1.3
                                                          0.2
## 3
                                                          0.2
## 4
               4.6
                             3.1
                                            1.5
                5.0
                                                          0.2
## 5
                             3.6
                                            1.4
## 6
                5.4
                             3.9
                                            1.7
                                                          0.4
dim(X)
           # gives n and p
## [1] 6 4
dim(iris) # for the full dataset
## [1] 150
              5
x_{i,i} \in \mathbb{R} represents the j-th feature of the i-th observation, j = 1, ..., p, i = 1, ..., n.
For instance:
X[3, 2] # 3rd row, 2nd column
## [1] 3.2
The third observation (data point, row in X) consists of items (x_{3,1}, \dots, x_{3,p}) that can
be extracted by calling:
X[3,]
```

length(X[3,])

[1] 4

Moreover, the second feature/variable/column is comprised of $(x_{1,2}, x_{2,2}, \dots, x_{n,2})$: x[,2]

[1] 3.5 3.0 3.2 3.1 3.6 3.9
length(X[,2])

[1] 6

We will sometimes use the following notation to emphasise that the **X** matrix consists of n rows or p columns:

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_{1,\cdot} \\ \mathbf{x}_{2,\cdot} \\ \vdots \\ \mathbf{x}_{n,\cdot} \end{bmatrix} = \begin{bmatrix} \mathbf{x}_{\cdot,1} & \mathbf{x}_{\cdot,2} & \cdots & \mathbf{x}_{\cdot,p} \end{bmatrix}.$$

Here, $\mathbf{x}_{i,.}$ is a row vector of length p, i.e., a $(1 \times p)$ -matrix:

$$\mathbf{x}_{i,\cdot} = \begin{bmatrix} x_{i,1} & x_{i,2} & \cdots & x_{i,p} \end{bmatrix}.$$

Moreover, $\mathbf{x}_{.,i}$ is a *column vector* of length *n*, i.e., an $(n \times 1)$ -matrix:

$$\mathbf{x}_{\cdot,j} = \begin{bmatrix} x_{1,j} & x_{2,j} & \cdots & x_{n,j} \end{bmatrix}^T = \begin{bmatrix} x_{1,j} \\ x_{2,j} \\ \vdots \\ x_{n,i} \end{bmatrix},$$

where \cdot^T denotes the *transpose* of a given matrix – think of this as a kind of rotation; it allows us to introduce a set of "vertically stacked" objects using a single inline formula.

1.2.2 Desired Outputs

In supervised learning, apart from the inputs we are also given the corresponding reference/desired outputs.

The aim of supervised learning is to try to create an "algorithm" that, given an input point, generates an output that is as *close* as possible to the desired one. The given data sample will be used to "train" this "model".

Usually the reference outputs are encoded as individual numbers (scalars) or textual labels.

4

Simple Linear Regression

In other words, with each input \mathbf{x}_{i} , we associate the desired output y_i :

```
# in iris, iris[, 5] gives the Ys
iris[sample(nrow(iris), 3), ] # three random rows
```

##		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
##	14	4.3	3.0	1.1	0.1	setosa
##	50	5.0	3.3	1.4	0.2	setosa
##	118	7.7	3.8	6.7	2.2	virginica

Hence, our dataset is $[\mathbf{X} \mathbf{y}]$ – each object is represented as a row vector $[\mathbf{x}_{i, \cdot} y_i]$, i = 1, ..., n:

$$[\mathbf{X} \mathbf{y}] = \begin{bmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,p} & y_1 \\ x_{2,1} & x_{2,2} & \cdots & x_{2,p} & y_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ x_{n,1} & x_{n,2} & \cdots & x_{n,p} & y_n \end{bmatrix},$$

where:

$$\mathbf{y} = \begin{bmatrix} y_1 & y_2 & \cdots & y_n \end{bmatrix}^T = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}.$$

1.2.3 Types of Supervised Learning Problems

Depending on the type of the elements in \mathbf{y} (the domain of \mathbf{y}), supervised learning problems are usually classified as:

• **regression** – each *y_i* is a real number

e.g., y_i = future market stock price with $\mathbf{x}_{i,\cdot}$ = prices from p previous days

• **classification** – each y_i is a discrete label

e.g., y_i = healthy (0) or ill (1) with $\mathbf{x}_{i,\cdot}$ = a patient's health record

• ordinal regression (a.k.a. ordinal classification) – each y_i is a rank

e.g., y_i = rating of a product on the scale 1–5 with $\mathbf{x}_{i,\cdot}$ = ratings of p most similar products

Exercise 1.2 *Example Problems – Discussion:*

Which of the following are instances of classification problems? Which of them are regression tasks?

What kind of data should you gather in order to tackle them?

• Detect email spam

- Predict a market stock price
- Predict the likeability of a new ad
- Assess credit risk
- Detect tumour tissues in medical images
- Predict time-to-recovery of cancer patients
- Recognise smiling faces on photographs
- Detect unattended luggage in airport security camera footage
- Turn on emergency braking to avoid a collision with pedestrians

A single dataset can become an instance of many different ML problems.

Examples – the wines dataset:

```
wines <- read.csv("datasets/winequality-all.csv", comment="#")
wines[1,]</pre>
```

```
fixed.acidity volatile.acidity citric.acid residual.sugar chlorides
##
## 1
                7.4
                                 0.7
                                                0
                                                              1.9
                                                                      0.076
     free.sulfur.dioxide total.sulfur.dioxide density
##
                                                           pH sulphates
## 1
                       11
                                             34 0.9978 3.51
                                                                   0.56
     alcohol response color
##
## 1
         9.4
                     5
                         гed
```

alcohol is a numeric (quantitative) variable (see Figure 1.1 for a histogram depicting its empirical distribution):

summary(wines\$alcohol) # continuous variable

Min. 1st Qu. Median Mean 3rd Qu. Max.
8.0 9.5 10.3 10.5 11.3 14.9
hist(wines\$alcohol, main="", col="white"); box()

color is a quantitative variable with two possible outcomes (see Figure 1.2 for a bar plot):

table(wines\$color) # binary variable

```
##
## red white
## 1599 4898
barplot(table(wines$color), col="white", ylim=c(0, 6000))
```

Moreover, response is an ordinal variable, representing a wine's rating as assigned by a wine expert (see Figure 1.3 for a barplot). Note that although the ranks are represented with numbers, we they are not continuous variables. Moreover, these ranks are something more than just labels – they are linearly ordered, we know what's the smallest rank and whats the greatest one.

6

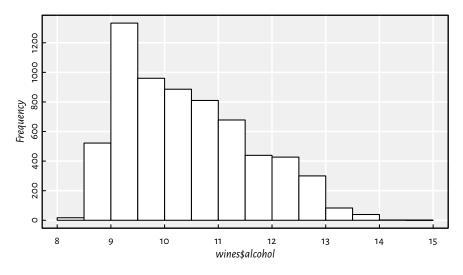


Figure 1.1: Quantitative (numeric) outputs lead to regression problems

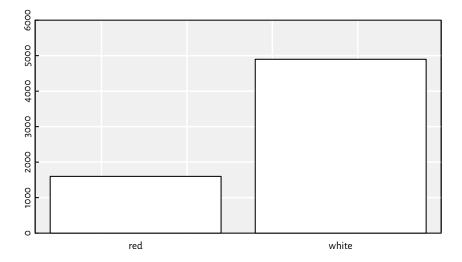


Figure 1.2: Quantitative outputs lead to classification tasks

table(wines\$response) # ordinal variable ## ## 30 216 2138 2836 1079 193 ## barplot(table(wines\$response), col="white", ylim=c(0, 3000))

Figure 1.3: Ordinal variables constitute ordinal regression tasks

1.3 Simple Regression

1.3.1 Introduction

Simple regression is the easiest setting to start with – let's assume p = 1, i.e., all inputs are 1-dimensional. Denote $x_i = x_{i,1}$.

We will use it to build many intuitions, for example, it'll be easy to illustrate all the concepts graphically.

```
library("ISLR") # Credit dataset
plot(Credit$Balance, Credit$Rating) # scatter plot
```

In what follows we will be modelling the Credit Rating (Y) as a function of the average Credit Card Balance (X) in USD for customers with positive Balance only. It is because it is evident from Figure 1.4 that some customers with zero balance obtained a credit

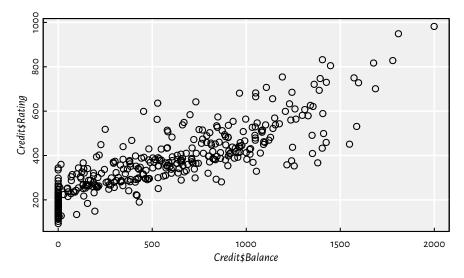


Figure 1.4: A scatter plot of Rating vs. Balance

rating based on some external data source that we don't have access to in our very setting.

```
X <- as.matrix(as.numeric(Credit$Balance[Credit$Balance>0]))
Y <- as.matrix(as.numeric(Credit$Rating[Credit$Balance>0]))
```

Figure 1.5 gives the updated scatter plot with the zero-balance clients "taken care of".

plot(X, Y, xlab="X (Balance)", ylab="Y (Rating)")

Our aim is to construct a function f that **models** Rating as a function of Balance, f(X) = Y.

We are equipped with n = 310 reference (observed) Ratings $\mathbf{y} = [y_1 \cdots y_n]^T$ for particular Balances $\mathbf{x} = [x_1 \cdots x_n]^T$.

Note the following naming conventions:

• Variable types:

- *X* - independent/explanatory/predictor variable

- Y dependent/response/predicted variable
- Also note that:

- Y - idealisation (any possible Rating)

- $\mathbf{y} = [y_1 \cdots y_n]^T$ - values actually observed

The model will not be ideal, but it might be usable:

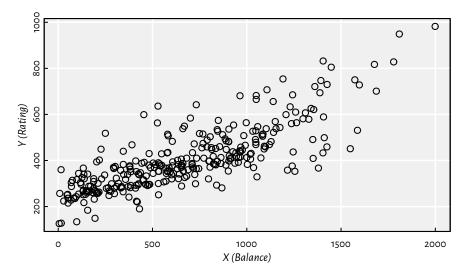


Figure 1.5: A scatter plot of Rating vs. Balance with clients of Balance=0 removed

• We will be able to **predict** the rating of any new client.

What should be the rating of a client with Balance of \$1500?

What should be the rating of a client with Balance of \$2500?

• We will be able to **describe** (understand) this reality using a single mathematical formula so as to infer that there is an association between *X* and *Y*

Think of "data compression" and laws of physics, e.g., $E = mc^2$.

(*) Mathematically, we will assume that there is some "true" function that models the data (true relationship between *Y* and *X*), but the observed outputs are subject to **additive error**:

$$Y = f(X) + \varepsilon.$$

 ε is a random term, classically we assume that errors are independent of each other, have expected value of 0 (there is no systematic error = unbiased) and that they follow a normal distribution.

(*) We denote this as $\varepsilon \sim \mathcal{N}(0, \sigma)$ (read: random variable ε follows a normal distribution with expected value of 0 and standard deviation of σ for some $\sigma \geq 0$).

 σ controls the amount of noise (and hence, uncertainty). Figure 1.6 gives the plot of the probability distribution function (PDFs, densities) of $\mathcal{N}(0, \sigma)$ for different σ s:

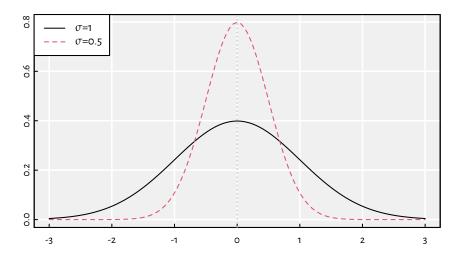


Figure 1.6: Probability density functions of normal distributions with different standard deviations σ .

1.3.2 Search Space and Objective

There are many different functions that can be **fitted** into the observed (x, y), compare Figure 1.7. Some of them are better than the other (with respect to different aspects, such as fit quality, simplicity etc.).

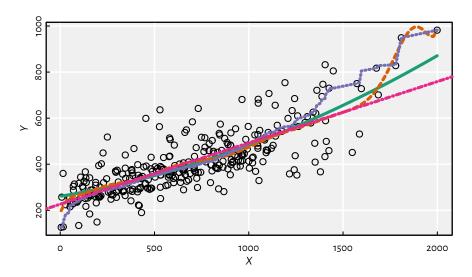


Figure 1.7: Different polynomial models fitted to data

Thus, we need a formal **model selection criterion** that could enable as to tackle the model fitting task on a computer.

Usually, we will be interested in a model that minimises appropriately aggregated **residuals** $f(x_i) - y_i$, i.e., **predicted outputs minus observed outputs**, often denoted with $\hat{y}_i - y_i$, for i = 1, ..., n.

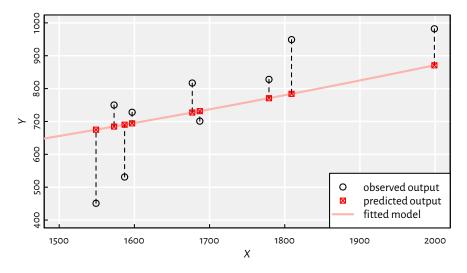


Figure 1.8: Residuals are defined as the differences between the predicted and observed outputs $\hat{y}_i - y_i$

In Figure 1.8, the residuals correspond to the lengths of the dashed line segments – they measure the discrepancy between the outputs generated by the model (what we get) and the true outputs (what we want).

Note that some sources define residuals as $y_i - \hat{y}_i = y_i - f(x_i)$.

Top choice: sum of squared residuals:

SSR(
$$f|\mathbf{x}, \mathbf{y}$$
) = $(f(x_1) - y_1)^2 + \dots + (f(x_n) - y_n)^2$
= $\sum_{i=1}^n (f(x_i) - y_i)^2$

Remark. Read " $\sum_{i=1}^{n} z_i$ " as "the sum of z_i for *i* from 1 to *n*"; this is just a shorthand for $z_1 + z_2 + \cdots + z_n$.

Simple Linear Regression

Remark. The notation $SSR(f|\mathbf{x}, \mathbf{y})$ means that it is the error measure corresponding to the model (f) given our data.

We could've denoted it with $SSR_{x,y}(f)$ or even SSR(f) to emphasise that x, y are just fixed values and we are not interested in changing them at all (they are "global variables").

We enjoy SSR because (amongst others):

• larger errors are penalised much more than smaller ones

(this can be considered a drawback as well)

• (**) statistically speaking, this has a clear underlying interpretation

(assuming errors are normally distributed, finding a model minimising the SSR is equivalent to maximum likelihood estimation)

• the models minimising the SSR can often be found easily

(corresponding optimisation tasks have an analytic solution – studied already by Gauss in the late 18th century)

(**) Other choices:

- regularised SSR, e.g., lasso or ridge regression (in the case of multiple input variables)
- sum or median of absolute values (robust regression)

Fitting a model to data can be written as an optimisation problem:

$$\min_{f \in \mathcal{F}} \text{SSR}(f | \mathbf{x}, \mathbf{y}),$$

i.e., find f minimising the SSR (seek "best" f) amongst the set of admissible models \mathcal{F} .

Example $\mathcal{F}s$:

- $\mathcal{F} = \{\text{All possible functions of one variable}\} \text{ if there are no repeated } x_i$'s, this corresponds to data *interpolation*; note that there are many functions that give SSR of 0.
- $\mathcal{F} = \{x \mapsto x^2, x \mapsto \cos(x), x \mapsto \exp(2x + 7) 9\}$ obviously an ad-hoc choice but you can easily choose the best amongst the 3 by computing 3 sums of squares.
- $\mathcal{F} = \{x \mapsto a + bx\}$ the space of linear functions of one variable
- etc.

(e.g., $x \mapsto x^2$ is read "x maps to x^2 " and is an elegant way to define an inline function f such that $f(x) = x^2$)

1.4 Simple Linear Regression

1.4.1 Introduction

If the family of admissible models \mathcal{F} consists only of all linear functions of one variable, we deal with a **simple linear regression**.

Our problem becomes:

$$\min_{a,b\in\mathbb{R}}\sum_{i=1}^{n}\left(a+bx_{i}-y_{i}\right)^{2}$$

In other words, we seek best fitting line in terms of the squared residuals.

This is the **method of least squares**.

This is particularly nice, because our search space is just \mathbb{R}^2 – easy to handle both analytically and numerically.

Exercise 1.3 Which of the lines in Figure 1.9 is the least squares solution?

1.4.2 Solution in R

Let's fit the linear model minimising the SSR in R. The lm() function (linear models) has a convenient *formula*-based interface.

f <- lm(Y~X)

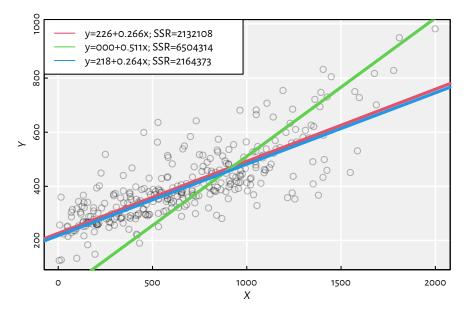


Figure 1.9: Three simple linear models together with the corresponding SSRs

In R, the expression " $Y \sim X$ " denotes a formula, which we read as: variable Y is a function of X. Note that the dependent variable is on the left side of the formula. Here, X and Y are two R numeric vectors of identical lengths.

Let's print the fitted model:

print(f)

```
##
## Call:
## lm(formula = Y ~ X)
##
## Coefficients:
## (Intercept) X
## 226.471 0.266
```

Hence, the fitted model is:

$$Y = f(X) = 226.47114 + 0.26615X \quad (+\varepsilon)$$

```
Coefficient a (intercept):
```

f\$coefficient[1]

(Intercept) ## 226.47 Coefficient *b* (slope):

f\$coefficient[2]

X ## 0.26615

Plotting, see Figure 1.10:

plot(X, Y, col="#000000aa")
abline(f, col=2, lwd=3)

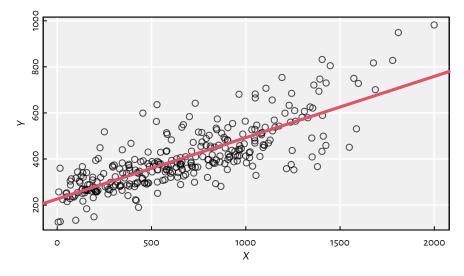


Figure 1.10: Fitted regression line

SSR:

sum(f\$residuals^2)

[1] 2132108

sum((f\$coefficient[1]+f\$coefficient[2]*X-Y)^2) # equivalent

[1] 2132108

We can predict the model's output for yet-unobserved inputs by writing:

X_new <- c(1500, 2000, 2500) # example inputs
f\$coefficient[1] + f\$coefficient[2]*X_new</pre>

[1] 625.69 758.76 891.84

Note that linear models can also be fitted based on formulas that refer to a data frame's columns. For example, let us wrap both **x** and **y** inside a data frame:

16

```
XY <- data.frame(Balance=X, Rating=Y)
head(XY, 3)
## Balance Rating
## 1 333 283
## 2 903 483
## 3 580 514
By writing:
f <- lm(Rating~Balance, data=XY)</pre>
```

now Balance and Rating refer to column names in the XY data frame, and not the objects in R's "workspace".

Based on the above, we can make a prediction using the predict() function"

```
X_new <- data.frame(Balance=c(1500, 2000, 2500))
predict(f, X_new)
## 1 2 3</pre>
```

625.69 758.76 891.84
Interestingly:
predict(f, data.frame(Balance=c(5000)))

1 ## 1557.2

This is more than the highest possible rating – we have extrapolated way beyond the observable data range.

Note that our Y = a + bX model is **interpretable** and **well-behaving** (not all machine learning models will have this feature, think: deep neural networks, which we rather conceive as *black boxes*):

- we know that by increasing X by a small amount, Y will also increase (positive correlation),
- the model is continuous small change in X doesn't yield any drastic change in Y,
- we know what will happen if we increase or decrease X by, say, 100,
- the function is invertible if we want Rating of 500, we can compute the associated preferred Balance that should yield it (provided that the model is valid).

1.4.3 Analytic Solution

It may be shown (which we actually do below) that the solution is:

Which can be implemented in R as follows:

```
n <- length(X)
b <- (n*sum(X*Y)-sum(X)*sum(Y))/(n*sum(X*X)-sum(X)^2)
a <- mean(Y)-b*mean(X)
c(a, b) # the same as f$coefficients</pre>
```

```
## [1] 226.47114 0.26615
```

1.4.4 Derivation of the Solution (**)

Remark. You can safely skip this part if you are yet to know how to search for a minimum of a function of many variables and what are partial derivatives.

Denote with:

$$E(a,b) = \operatorname{SSR}(x \mapsto a + bx | \mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} (a + bx_i - y_i)^2.$$

We seek the minimum of *E* w.r.t. both *a*, *b*.

Theorem. If *E* has a (local) minimum at (a^*, b^*) , then its partial derivatives vanish therein, i.e., $\partial E/\partial a(a^*, b^*) = 0$ and $\partial E/\partial b(a^*, b^*) = 0$.

We have:

$$E(a,b) = \sum_{i=1}^{n} (a + bx_i - y_i)^2.$$

We need to compute the partial derivatives $\partial E / \partial a$ (derivative of *E* w.r.t. variable *a* – all other terms treated as constants) and $\partial E / \partial b$ (w.r.t. *b*).

Useful rules – derivatives w.r.t. a (denote f'(a) = (f(a))'):

- (f(a) + g(a))' = f'(a) + g'(a) (derivative of sum is sum of derivatives)
- (f(a)g(a))' = f'(a)g(a) + f(a)g'(a) (derivative of product)
- (f(g(a)))' = f'(g(a))g'(a) (chain rule)
- (c)' = 0 for any constant *c* (expression not involving *a*)

Simple Linear Regression

- $(a^p)' = pa^{p-1}$ for any p
- in particular: $(ca^2 + d)' = 2ca$, (ca)' = c, $((ca + d)^2)' = 2(ca + d)c$ (application of the above rules)

We seek *a*, *b* such that $\frac{\partial E}{\partial a}(a, b) = 0$ and $\frac{\partial E}{\partial b}(a, b) = 0$.

$$\int \frac{\partial E}{\partial a}(a,b) = 2\sum_{i=1}^{n} (a+bx_i-y_i) = 0$$

$$\int \frac{\partial E}{\partial b}(a,b) = 2\sum_{i=1}^{n} (a+bx_i-y_i) x_i = 0$$

This is a system of 2 linear equations. Easy.

Rearranging like back in the school days:

$$\begin{cases} b \sum_{i=1}^{n} x_i + an = \sum_{i=1}^{n} y_i \\ b \sum_{i=1}^{n} x_i x_i + a \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} x_i y_i \end{cases}$$

It is left as an exercise to show that the solution is:

$$\begin{cases} b^* = \frac{n \sum_{i=1}^n x_i y_i - \sum_{i=1}^n y_i \sum_{i=1}^n x_i}{n \sum_{i=1}^n x_i x_i - \sum_{i=1}^n x_i \sum_{i=1}^n x_i} \\ a^* = \frac{1}{n} \sum_{i=1}^n y_i - b^* \frac{1}{n} \sum_{i=1}^n x_i \end{cases}$$

(we should additionally perform the second derivative test to assure that this is the minimum of E – which is exactly the case though)

(**) In the next chapter, we will introduce the notion of Pearson's linear coefficient, r (see cor() in R). It might be shown that a and b can also be rewritten as:

(b <- cor(X,Y)*sd(Y)/sd(X))

```
## [,1]
## [1,] 0.26615
(a <- mean(Y)-b*mean(X))
## [,1]
## [1,] 226.47</pre>
```

1.5 Exercises in R

1.5.1 The Anscombe Quartet

Here is a famous illustrative example proposed by the statistician Francis Anscombe in the early 1970s.

print(anscombe) # `anscombe` is a built-in object

##		x1	x2	х3	х4	у1	y2	у3	y4
##	1	10	10	10	8	8.04	9.14	7.46	6.58
##	2	8	8	8	8	6.95	8.14	6.77	5.76
##	3	13	13	13	8	7.58	8.74	12.74	7.71
##	4	9	9	9	8	8.81	8.77	7.11	8.84
##	5	11	11	11	8	8.33	9.26	7.81	8.47
##	6	14	14	14	8	9.96	8.10	8.84	7.04
##	7	6	6	6	8	7.24	6.13	6.08	5.25
##	8	4	4	4	19	4.26	3.10	5.39	12.50
##	9	12	12	12	8	10.84	9.13	8.15	5.56
##	10	7	7	7	8	4.82	7.26	6.42	7.91
##	11	5	5	5	8	5.68	4.74	5.73	6.89

What we see above is a single data frame that encodes four separate datasets: anscombe\$x1 and anscombe\$y1 define the first pair of variables, anscombe\$x2 and anscombe\$y2 define the second pair and so forth.

Exercise 1.4 Split the above data (manually) into four data frames ans1, ..., ans4 with columns x and y.

For example, ans1 should look like:

print(ans1)

##		Х	У
##	1	10	8.04
##	2	8	6.95
##	3	13	7.58
##	4	9	8.81
##	5	11	8.33
##	6	14	9.96
##	7	6	7.24
##	8	4	4.26
##	9	12	10.84
##	10	7	4.82
##	11	5	5.68

Solution.

```
ans1 <- data.frame(x=anscombe$x1, y=anscombe$y1)
ans2 <- data.frame(x=anscombe$x2, y=anscombe$y2)
ans3 <- data.frame(x=anscombe$x3, y=anscombe$y3)
ans4 <- data.frame(x=anscombe$x4, y=anscombe$y4)
print(ans1)</pre>
```

Exercise 1.5 Compute the mean of each x and y variable.

```
Solution.
mean(ans1$x) # individual column
## [1] 9
mean(ans1$y) # individual column
## [1] 7.5009
sapply(ans2, mean) # all columns in ans2
##
        Х
               У
## 9.0000 7.5009
sapply(anscombe, mean) # all columns in the full anscombe dataset
##
              x2
                      x3
                                                   у3
       x1
                             x4
                                     v1
                                            v2
                                                           y4
```

Comment: This is really interesting, all the means of x columns as well as the means of ys are almost identical.

Exercise 1.6 Compute the standard deviation of each x and y variable.

9.0000 9.0000 9.0000 9.0000 7.5009 7.5009 7.5000 7.5009

Solution.

The solution is similar to the previous one, just replace mean with sd. Here, to learn something new, we will use the knitr::kable() function that pretty-prints a given matrix or data frame:

```
results <- sapply(anscombe, sd)
knitr::kable(results, col.names="standard deviation")</pre>
```

	standard deviation
<i>x</i> 1	3.3166
х2	3.3166
х3	3.3166

	standard deviation
<i>x</i> 4	3.3166
<i>y</i> 1	2.0316
<i>y</i> 2	2.0317
у3	2.0304
<i>y</i> 4	2.0306

Comment: This is even more interesting, because the numbers agree up to 2 decimal digits.

Exercise 1.7 Fit a simple linear regression model for each data set. Draw the scatter plots again (plot()) and add the regression lines (lines() or abline()).

Solution.

To recall, this can be done with the Lm() function explained in Lecture 2.

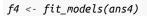
At this point we should already have become lazy – the tasks are very repetitious. Let's automate them by writing a single function that does all the above for any data set:

```
fit_models <- function(ans) {
    # ans is a data frame with columns x and y
    f <- lm(y~x, data=ans) # fit linear model
    print(f$coefficients) # estimated coefficients
    plot(ans$x, ans$y) # scatter plot
    abline(f, col="red") # regression line
    return(f)
}</pre>
```

```
Now we can apply it on the four particular examples.
```

```
par(mfrow=c(2, 2)) # four plots on 1 figure (2x2 grid)
f1 <- fit_models(ans1)</pre>
```

```
## (Intercept)
                            х
##
        3.00009
                     0.50009
f2 <- fit_models(ans2)</pre>
## (Intercept)
                            х
         3.0009
##
                       0.5000
f3 <- fit models(ans3)</pre>
## (Intercept)
                            х
##
        3.00245
                     0.49973
```



(Intercept) x ## 3.00173 0.49991

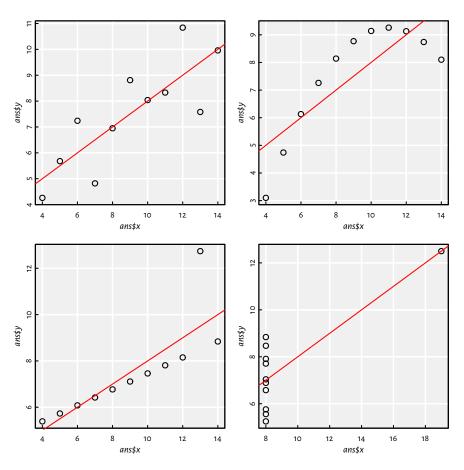


Figure 1.11: Fitted regression lines for the Anscombe quartet

Comment: All the estimated models are virtually the same, the regression lines are y = 0.5x + 3, compare Figure 1.11.

Exercise 1.8 Create scatter plots of the residuals (predicted \hat{y}_i minus true y_i) as a function of the predicted $\hat{y}_i = f(x_i)$ for every i = 1, ..., 11.

Solution.

To recall, the model predictions can be generated by (amongst others) calling the predict() function.

```
y_pred1 <- f1$fitted.values # predict(f1, ans1)
y_pred2 <- f2$fitted.values # predict(f2, ans2)
y_pred3 <- f3$fitted.values # predict(f3, ans3)
y_pred4 <- f4$fitted.values # predict(f4, ans4)</pre>
```

Plots of residuals as a function of the predicted (fitted) values are given in Figure 1.12.

```
par(mfrow=c(2, 2)) # four plots on 1 figure (2x2 grid)
plot(y_pred1, y_pred1-ans1$y)
plot(y_pred2, y_pred2-ans2$y)
plot(y_pred3, y_pred3-ans3$y)
plot(y_pred4, y_pred4-ans4$y)
```

Comment: Ideally, the residuals shouldn't be correlated with the predicted values – they should "oscillate" randomly around o. This is only the case of the first dataset. All the other cases are "alarming" in the sense that they suggest that the obtained models are "suspicious" (perhaps data cleansing is needed or a linear model is not at all appropriate).

Exercise 1.9 Draw conclusions (in your own words).

Solution.

We're being taught a lesson here: don't perform data analysis tasks automatically, don't look at bare numbers only, visualise your data first!

Exercise 1.10 Read more about Anscombe's quartet at https://en.wikipedia.org/wiki/Ansc ombe%27s_quartet

1.6 Outro

1.6.1 Remarks

In supervised learning, with each input point, there's an associated reference output value.

Learning a model = constructing a function that approximates (minimising some error measure) the given data.

Regression = the output variable *Y* is continuous.

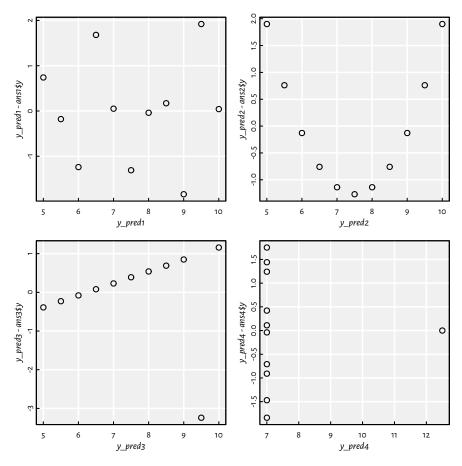


Figure 1.12: Residuals vs. fitted values for the regression lines fitted to the Anscombe quartet

We studied linear models with a single independent variable based on the least squares (SSR) fit.

In the next part we will extend this setting to the case of many variables, i.e., p>1, called multiple regression.

1.6.2 Further Reading

Recommended further reading: (James et al. 2017: Chapters 1, 2 and 3)

Other: (Hastie et al. 2017: Chapter 1, Sections 3.2 and 3.3)

Multiple Regression

2

These lecture notes are distributed in the hope that they will be useful. Any bug reports are appreciated.

2.1 Introduction

2.1.1 Formalism

Let $\mathbf{X} \in \mathbb{R}^{n \times p}$ be an input matrix that consists of *n* points in a *p*-dimensional space.

In other words, we have a database on n objects, each of which being described by means of p numerical features.

$$\mathbf{X} = \begin{bmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,p} \\ x_{2,1} & x_{2,2} & \cdots & x_{2,p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n,1} & x_{n,2} & \cdots & x_{n,p} \end{bmatrix}$$

Recall that in supervised learning, apart from \mathbf{X} , we are also given the corresponding \mathbf{y} ; with each input point $\mathbf{x}_{i,\cdot}$ we associate the desired output y_i .

In this chapter we are still interested in **regression** tasks; hence, we assume that each y_i it is a real number, i.e., $y_i \in \mathbb{R}$.

Hence, our dataset is [X y] – where each object is represented as a row vector $[x_{i, \cdot} y_i]$, i = 1, ..., n:

$$[\mathbf{X} \mathbf{y}] = \begin{bmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,p} & y_1 \\ x_{2,1} & x_{2,2} & \cdots & x_{2,p} & y_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ x_{n,1} & x_{n,2} & \cdots & x_{n,p} & y_n \end{bmatrix}$$

2.1.2 Simple Linear Regression - Recap

In a simple regression task, we have assumed that p = 1 – there is only one independent variable, denoted $x_i = x_{i,1}$.

We restricted ourselves to linear models of the form Y = f(X) = a + bX that minimised the sum of squared residuals (SSR), i.e.,

$$\min_{a,b\in\mathbb{R}}\sum_{i=1}^n \left(a+bx_i-y_i\right)^2.$$

The solution is:

$$\begin{cases} b = \frac{n \sum_{i=1}^{n} x_{i} y_{i} - \sum_{i=1}^{n} y_{i} \sum_{i=1}^{n} x_{i}}{n \sum_{i=1}^{n} x_{i} x_{i} - \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} x_{i}} \\ a = \frac{1}{n} \sum_{i=1}^{n} y_{i} - b \frac{1}{n} \sum_{i=1}^{n} x_{i} \end{cases}$$

Fitting in R can be performed by calling the lm() function:

```
library("ISLR") # Credit dataset
X <- as.numeric(Credit$Balance[Credit$Balance>0])
Y <- as.numeric(Credit$Rating[Credit$Balance>0])
f <- lm(Y~X) # Y~X is a formula, read: Y is a function of X
print(f)</pre>
```

```
##
## Call:
## lm(formula = Y ~ X)
##
## Coefficients:
## (Intercept) X
## 226.471 0.266
```

Figure 2.1 gives the scatter plot of Y vs. X together with the fitted simple linear model.

Multiple Regression

plot(X, Y, xlab="X (Balance)", ylab="Y (Credit)")
abline(f, col=2, lwd=3)

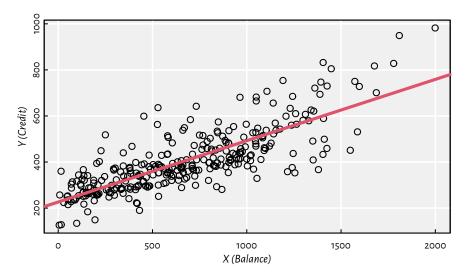


Figure 2.1: Fitted regression line for the Credit dataset

2.2 Multiple Linear Regression

2.2.1 Problem Formulation

Let's now generalise the above to the case of many variables X_1, \ldots, X_p .

We wish to model the dependent variable as a function of *p* independent variables.

$$Y = f(X_1, \dots, X_p) \qquad (+\varepsilon)$$

Restricting ourselves to the class of linear models, we have

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p.$$

Above we studied the case where p = 1, i.e., $Y = a + bX_1$ with $\beta_0 = a$ and $\beta_1 = b$. The above equation defines:

- p = 1 a line (see Figure 2.1),
- p = 2 a plane (see Figure 2.2),
- *p* ≥ 3 a hyperplane (well, most people find it difficult to imagine objects in high dimensions, but we are lucky to have this thing called maths).

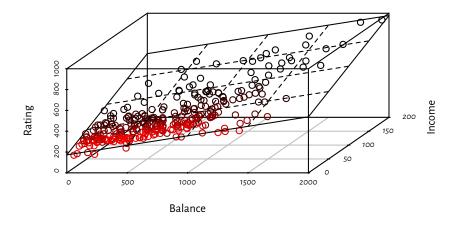


Figure 2.2: Fitted regression plane for the Credit dataset

2.2.2 Fitting a Linear Model in R

lm() accepts a formula of the form Y~X1+X2+...+Xp.

It finds the least squares fit, i.e., solves

$$\min_{\beta_0,\beta_1,\dots,\beta_p \in \mathbb{R}} \sum_{i=1}^n \left(\beta_0 + \beta_1 x_{i,1} + \dots + \beta_p x_{i,p} - y_i\right)^2$$

X1 <- as.numeric(Credit\$Balance[Credit\$Balance>0])
X2 <- as.numeric(Credit\$Income[Credit\$Balance>0])
Y <- as.numeric(Credit\$Rating[Credit\$Balance>0])
f <- lm(Y~X1+X2)
f\$coefficients # β0, β1, β2</pre>

(Intercept) X1 X2 ## 172.5587 0.1828 2.1976

By the way, the 3D scatter plot in Figure 2.2 was generated by calling:

```
library("scatterplot3d")
```

```
s3d <- scatterplot3d(X1, X2, Y,
angle=60, # change angle to reveal more
highlight.3d=TRUE, xlab="Balance", ylab="Income",
```

```
zlab="Rating")
s3d$plane3d(f, lty.box="solid")
```

(s3d is an R list, one of its elements named plane3d is a function object - this is legal)

2.3 Finding the Best Model

2.3.1 Model Diagnostics

Here is Rating (Y) as function of Balance (X_1 , lefthand side of Figure 2.3) and Income (X_2 , righthand side of Figure 2.3).

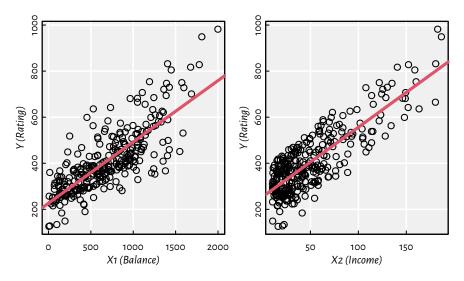


Figure 2.3: Scatter plots of Y vs. X_1 and X_2

Moreover, Figure 2.4 depicts (in a hopefully readable manner) both X_1 and X_2 with Rating Y encoded with a colour (low ratings are green, high ratings are red; some rating values are explicitly printed out within the plot).

Consider the three following models.

Formula	Equation
Rating ~ Balance + Income	$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2$
Rating ~ Balance	$Y = a + bX_1 (\beta_0 = a, \beta_1 = b, \beta_2 = 0)$
Rating ~ Income	$Y = a + bX_2 (\beta_0 = a, \beta_1 = 0, \beta_2 = b)$

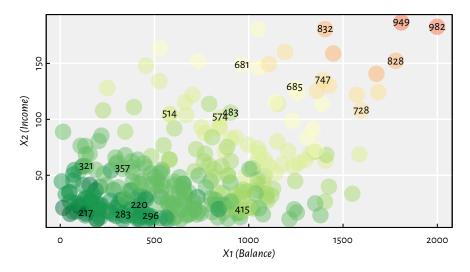


Figure 2.4: A heatmap for Rating as a function of Balance and Income; greens represent low credit ratings, whereas reds – high ones

```
f12 <- lm(Y~X1+X2) # Rating ~ Balance + Income
f12$coefficients
                                      X2
## (Intercept)
                         Χ1
##
      172.5587
                     0.1828
                                 2.1976
f1 <- lm(Y~X1)
                    # Rating ~ Balance
f1$coefficients
## (Intercept)
                         Χ1
##
     226.47114
                    0.26615
f2 <- lm(Y~X2)
                    # Rating ~ Income
f2$coefficients
## (Intercept)
                         X2
##
      253.8514
                     3.0253
```

Which of the three models is the best? Of course, by using the word "best", we need to answer the question "best?... but with respect to what kind of measure?"

So far we were fitting w.r.t. SSR, as the multiple regression model generalises the two simple ones, the former must yield a not-worse SSR. This is because in the case of $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2$, setting β_1 to 0 (just one of uncountably many possible $\beta_1 s$, if it happens to be the *best* one, good for us) gives $Y = a + bX_2$ whereas by setting β_2 to 0 we obtain $Y = a + bX_1$.

```
sum(f12$residuals^2)
## [1] 358261
sum(f1$residuals^2)
## [1] 2132108
sum(f2$residuals^2)
```

```
## [1] 1823473
```

We get that, in terms of SSRs, f_{12} is better than f_2 , which in turn is better than f_1 . However, these error values per se (sheer numbers) are meaningless (not meaning-ful).

Remark. Interpretability in ML has always been an important issue, think the EU General Data Protection Regulation (GDPR), amongst others.

2.3.1.1 SSR, MSE, RMSE and MAE

The quality of fit can be assessed by performing some descriptive statistical analysis of the residuals, $\hat{y}_i - y_i$, for i = 1, ..., n.

I know how to summarise data on the residuals! Of course I should compute their arithmetic mean and I'm done with that task! Interestingly, the mean of residuals (this can be shown analytically) in the least squared fit is always equal to 0:

$$\frac{1}{n}\sum_{i=1}^n (\hat{y}_i - y_i) = 0.$$

Therefore, we need a different metric.

Exercise 2.1 (*) A proof of this fact is left as an exercise to the curious; assume p = 1 just as in the previous chapter and note that $\hat{y}_i = ax_i + b$.

mean(f12\$residuals) # almost zero numerically

[1] -2.7045e-16
all.equal(mean(f12\$residuals), 0)

[1] TRUE

We noted that sum of squared residuals (SSR) is not interpretable, but the mean squared residuals (MSR) – also called mean squared error (MSE) regression loss – is a little better. Recall that mean is defined as the sum divided by number of samples.

$$MSE(f) = \frac{1}{n} \sum_{i=1}^{n} (f(\mathbf{x}_{i, \cdot}) - y_i)^2.$$

```
mean(f12$residuals^2)
```

[1] 1155.7 mean(f1\$residuals^2)

[1] 6877.8

mean(f2\$residuals^2)

[1] 5882.2

This gives an information of how much do we err *per sample*, so at least this measure does not depend on *n* anymore. However, if the original Ys are, say, in metres [m], MSE is expressed in metres squared $[m^2]$.

To account for that, we may consider the root mean squared error (RMSE):

RMSE(f) =
$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} (f(\mathbf{x}_{i,\cdot}) - y_i)^2}.$$

This is just like with the sample variance vs. standard deviation – recall the latter is defined as the square root of the former.

```
sqrt(mean(f12$residuals^2))
```

```
## [1] 33.995
sqrt(mean(f1$residuals^2))
## [1] 82.932
sqrt(mean(f2$residuals^2))
```

```
## [1] 76.695
```

The interpretation of the RMSE is rather quirky; it is some-sort-of-averaged *deviance* from the true rating (which is on the scale 0–1000, hence we see that the first model is not that bad). Recall that the square function is sensitive to large observations, hence, it penalises notable deviations more heavily.

As still we have a problem with finding something easily interpretable (your nontechnical boss or client may ask you: but what do these numbers mean??), we suggest here that the mean absolute error (MAE; also called mean absolute deviations, MAD) might be a better idea than the above:

$$\mathsf{MAE}(f) = \frac{1}{n} \sum_{i=1}^{n} |f(\mathbf{x}_{i,\cdot}) - y_i|$$

mean(abs(f12\$residuals))

[1] 22.863

```
mean(abs(f1$residuals))
## [1] 61.489
mean(abs(f2$residuals))
```

[1] 64.151

With the above we may say "On average, the predicted rating differs from the observed one by...". That is good enough.

Remark. (*) You may ask why don't we fit models so as to minimise the MAE and we minimise the RMSE instead (note that minimising RMSE is the same as minimising the SSR, one is a strictly monotone transformation of the other and do not affect the solution). Well, it is possible. It turns out that, however, minimising MAE is more computationally expensive and the solution may be numerically unstable. So it's rarely an analyst's first choice (assuming they are well-educated enough to know about the MAD regression task). However, it may be worth trying it out sometimes.

Sometimes we might prefer MAD regression to the classic one if our data is heavily contaminated by outliers. But in such cases it is worth checking if proper data cleansing does the trick.

2.3.1.2 Graphical Summaries of Residuals

If we are not happy with single numerical aggregated of the residuals or their absolute values, we can (and should) always compute a whole bunch of descriptive statistics:

summary(f12\$residuals)

```
Median
##
      Min. 1st Qu.
                               Mean 3rd Qu.
                                                Max.
## -108.10
             -1.94
                       7.81
                               0.00
                                      20.25
                                               50.62
summary(f1$residuals)
##
      Min. 1st Qu.
                    Median
                               Mean 3rd Qu.
                                                Max.
##
    -226.8
             -48.3
                      -10.1
                                0.0
                                       42.6
                                               268.7
summary(f2$residuals)
##
      Min. 1st Qu. Median
                               Mean 3rd Qu.
                                                Max.
## -195.16 -57.34
                      -1.28
                               0.00
                                      64.01
                                             175.34
```

The outputs generated by summary() include:

- Min. sample minimum
- 1st Qu. 1st quartile == 25th percentile == quantile of order 0.25
- Median median == 50th percentile == quantile of order 0.5
- 3rd Qu. 3rd quartile = 75th percentile == quantile of order 0.75

• Max. - sample maximum

For example, 1st quartile is the observation q such that 25% values are $\leq q$ and 75% values are $\geq q$, see ?quantile in R.

Graphically, it is nice to summarise the empirical distribution of the residuals on a **box and whisker plot**. Here is the key to decipher Figure 2.5:

- IQR == Interquartile range == Q3-Q1 (box width)
- The box contains 50% of the "most typical" observations
- Box and whiskers altogether have width \leq 4 IQR
- Outliers == observations potentially worth inspecting (is it a bug or a feature?)

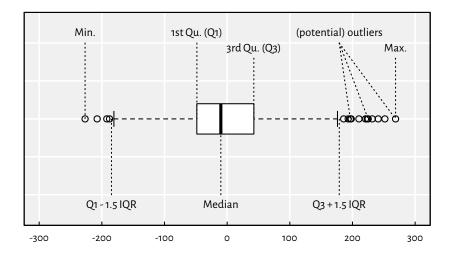


Figure 2.5: An example boxplot

Figure 2.6 is worth a thousand words:

```
boxplot(horizontal=TRUE, xlab="residuals", col="white",
    list(f12=f12$residuals, f1=f1$residuals, f2=f2$residuals))
    abline(v=0, lty=3)
```

Figure 2.7 gives a *violin plot* – a blend of a box plot and a (kernel) density estimator (histogram-like):

```
library("vioplot")
vioplot(horizontal=TRUE, xlab="residuals", col="white",
    list(f12=f12$residuals, f1=f1$residuals, f2=f2$residuals))
abline(v=0, lty=3)
```

We can also take a look at the absolute values of the residuals. Here are some descriptive statistics:

36

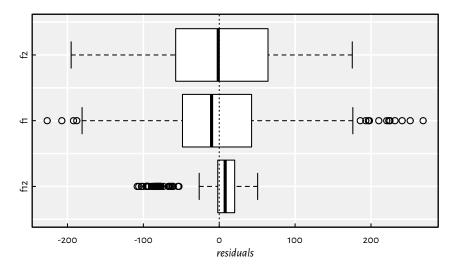


Figure 2.6: Box plots of the residuals for the three models studied



Figure 2.7: Violin plots of the residuals for the three models studied

```
summary(abs(f12$residuals))
##
      Min. 1st Qu.
                    Median
                              Mean 3rd Qu.
                                               Max.
     0.065
             6.464
                   14.071
                            22.863 26.418 108.100
##
summary(abs(f1$residuals))
##
      Min. 1st Qu.
                    Median
                              Mean 3rd Qu.
                                               Max.
     0.506 19.664 45.072
                            61.489 80.124 268.738
##
summary(abs(f2$residuals))
##
      Min. 1st Qu.
                    Median
                              Mean 3rd Qu.
                                               Max.
##
     0.655 29.854 59.676 64.151 95.738 195.156
Figure 2.8 is worth $1000:
boxplot(horizontal=TRUE, col="white", xlab="abs(residuals)",
  list(f12=abs(f12$residuals), f1=abs(f1$residuals),
       f2=abs(f2$residuals)))
abline(v=0, lty=3)
```

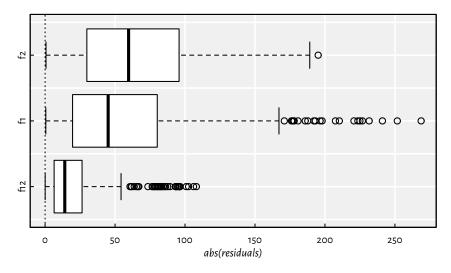


Figure 2.8: Box plots of the modules of the residuals for the three models studied

2.3.1.3 Coefficient of Determination (R-squared)

If we didn't know the range of the dependent variable (in our case we do know that the credit rating is on the scale 0–1000), the RMSE or MAE would be hard to interpret.

It turns out that there is a popular normalised (unit-less) measure that is some-

how easy to interpret with no domain-specific knowledge of the modelled problem. Namely, the (unadjusted) R^2 **score** (the coefficient of determination) is given by:

$$R^{2}(f) = 1 - \frac{\sum_{i=1}^{n} (y_{i} - f(\mathbf{x}_{i, \cdot}))^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}},$$

where ȳ is the arithmetic mean ¹/_n ∑ⁿ_{i=1} y_i.
(r12 <- summary(f12)\$r.squared)
[1] 0.93909
1 - sum(f12\$residuals^2)/sum((Y-mean(Y))^2) # the same
[1] 0.93909
(r1 <- summary(f1)\$r.squared)
[1] 0.63751</pre>

(r2 <- summary(f2)\$r.squared)</pre>

[1] 0.68998

The coefficient of determination gives the proportion of variance of the dependent variable explained by independent variables in the model; $R^2(f) \simeq 1$ indicates a perfect fit. The first model is a very good one, the simple models are "more or less okay".

Unfortunately, R^2 tends to automatically increase as the number of independent variables increase (recall that the more variables in the model, the better the SSR must be). To correct for this phenomenon, we sometimes consider the **adjusted** R^2 :

$$\bar{R}^2(f) = 1 - (1 - R^2(f)) \frac{n-1}{n-p-1}$$

summary(f12)\$adj.r.squared

[1] 0.93869 n <- length(x); 1 - (1 - r12)*(n-1)/(n-3) # the same

[1] 0.93869

summary(f1)\$adj.r.squared

[1] 0.63633

summary(f2)\$adj.r.squared

[1] 0.68897

In other words, the adjusted R^2 penalises for more complex models.

Remark. (*) Side note – results of some statistical tests (e.g., significance of coefficients) are reported by calling summary(f12) etc. — refer to a more advanced source to obtain more information. These, however, require the verification of some assumptions regarding the input data and the residuals.

```
summary(f12)
##
## Call:
## lm(formula = Y ~ X1 + X2)
##
## Residuals:
##
       Min
                1Q Median
                               3Q
                                      Max
## -108.10 -1.94
                      7.81
                            20.25
                                    50.62
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.73e+02
                         3.95e+00
                                     43.7
                                            <2e-16 ***
                                     35.4
## X1
              1.83e-01
                         5.16e-03
                                            <2e-16 ***
## X2
              2.20e+00
                        5.64e-02
                                     39.0 <2e-16 ***
## ---
                  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
##
## Residual standard error: 34.2 on 307 degrees of freedom
## Multiple R-squared: 0.939, Adjusted R-squared: 0.939
## F-statistic: 2.37e+03 on 2 and 307 DF, p-value: <2e-16
```

2.3.1.4 Residuals vs. Fitted Plot

We can also create scatter plots of the residuals (predicted \hat{y}_i minus true y_i) as a function of the predicted $\hat{y}_i = f(\mathbf{x}_{i,\cdot})$, see Figure 2.9.

```
Y_pred12 <- f12$fitted.values # predict(f12, data.frame(X1, X2))
Y_pred1 <- f1$fitted.values # predict(f1, data.frame(X1))
Y_pred2 <- f2$fitted.values # predict(f2, data.frame(X2))
par(mfrow=c(1, 3))
plot(Y_pred12, Y_pred12-Y)
plot(Y_pred1, Y_pred1 -Y)
plot(Y_pred2, Y_pred2 -Y)</pre>
```

Ideally (provided that the hypothesis that the dependent variable is indeed a linear function of the dependent variable(s) is true), we would expect to see a point cloud that spread around 0 in a very much unorderly fashion.

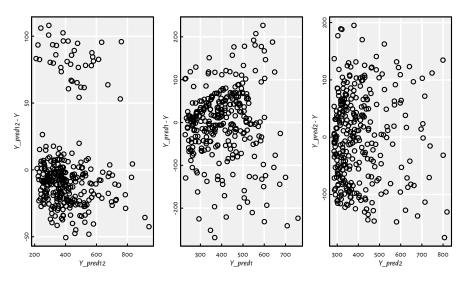


Figure 2.9: Residuals vs. fitted outputs for the three regression models

2.3.2 Variable Selection

Okay, up to now we've been considering the problem of modelling the Rating variable as a function of Balance and/or Income. However, it the Credit data set there are other variables possibly worth inspecting.

Consider all quantitative (numeric-continuous) variables in the Credit data set.

##		Rating	Limit	Income	Age	Education	Balance
##	1	283	3606	14.891	34	11	333
##	2	483	6645	106.025	82	15	903
##	3	514	7075	104.593	71	11	580
##	4	681	9504	148.924	36	11	964
##	5	357	4897	55.882	68	16	331
##	6	569	8047	80.180	77	10	1151

Obviously there are many possible combinations of the variables upon which regression models can be constructed (precisely, for p variables there are 2^p such models). How do we choose the *best* set of inputs?

Remark. We should already be suspicious at this point: wait... *best* requires some sort of criterion, right?

First, however, let's draw a matrix of scatter plots for every pair of variables – so as to get an impression of how individual variables interact with each other, see Figure 2.10.

pairs(C)

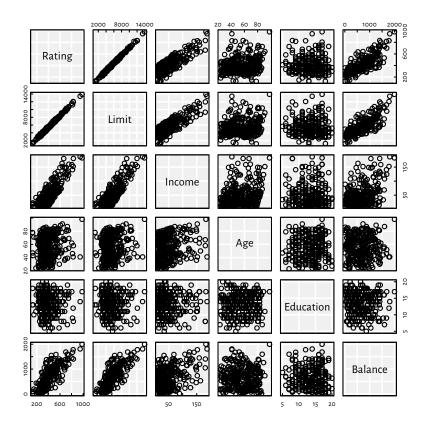


Figure 2.10: Scatter plot matrix for the Credit dataset

It seems like Rating depends on Limit almost linearly... We have a tool to actually quantify the degree of linear dependence between a pair of variables – Pearson's r – the linear correlation coefficient:

$$r(\mathbf{x}, \mathbf{y}) = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}.$$

It holds $r \in [-1, 1]$, where:

- r = 1 positive linear dependence (y increases as x increases)
- r = -1 negative linear dependence (y decreases as x increases)
- $r \simeq 0$ uncorrelated or non-linearly dependent

Figure 2.11 gives an illustration of the above.

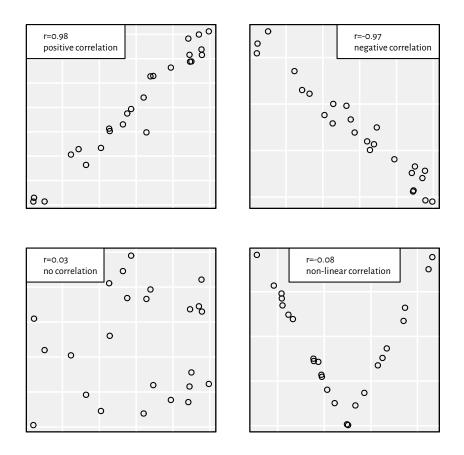


Figure 2.11: Different datasets and the corresponding Pearson's r coefficients

To compute Pearson's *r* between all pairs of variables, we call: round(cor(C), 3)

Rating Limit Income Age Education Balance ## ## Rating 1.000 0.996 0.831 0.167 -0.040 0.798 ## Limit 0.996 1.000 0.834 0.164 -0.032 0.796 ## Income 0.831 0.834 1.000 0.227 -0.033 0.414 ## Age 0.167 0.164 0.227 1.000 0.024 0.008 ## Education -0.040 -0.032 -0.033 0.024 1.000 0.001

Balance 0.798 0.796 0.414 0.008 0.001 1.000

Rating and Limit are almost perfectly linearly correlated, and both seem to describe the same thing.

For practical purposes, we'd rather model Rating as a function of the other variables. For simple linear regression models, we'd choose either Income or Balance. How about multiple regression though?

The best model:

- has high predictive power,
- is simple.

These two criteria are often mutually exclusive.

Which variables should be included in the optimal model?

Again, the definition of the "best" object needs a *fitness* function.

For fitting a single model to data, we use the SSR.

We need a metric that takes the number of dependent variables into account.

Remark. (*) Unfortunately, the adjusted R^2 , despite its interpretability, is not really suitable for this task. It does not penalise complex models heavily enough to be really useful.

Here we'll be using the Akaike Information Criterion (AIC).

For a model f with p' independent variables:

$$AIC(f) = 2(p'+1) + n\log(SSR(f)) - n\log n$$

Our task is to find the combination of independent variables that minimises the AIC.

Remark. (**) Note that this is a bi-level optimisation problem – for every considered combination of variables (which we look for), we must solve another problem of finding the best model involving these variables – the one that minimises the SSR.

$$\min_{s_1,s_2,\dots,s_p \in \{0,1\}} \left(\begin{array}{c} 2\left(\sum_{j=1}^p s_j + 1\right) + \\ n \log\left(\min_{\beta_0,\beta_1,\dots,\beta_p \in \mathbb{R}} \sum_{i=1}^n \left(\beta_0 + s_1\beta_1 x_{i,1} + \dots + s_p\beta_p x_{i,p} - y_i\right)^2\right) \end{array} \right)$$

We dropped the $n \log n$ term, because it is always constant and hence doesn't affect the solution. If $s_j = 0$, then the $s_j \beta_j x_{i,j}$ term is equal to 0, and hence is not considered in the model. This plays the role of including $s_j = 1$ or omitting $s_j = 0$ the *j*-th variable in the model building exercise.

44

Multiple Regression

For p variables, the number of their possible combinations is equal to 2^p (grows exponentially with p). For large p (think big data), an extensive search is impractical (in our case we could get away with this though – left as an exercise to a slightly more advanced reader). Therefore, to find the variable combination minimising the AIC, we often rely on one of the two following greedy heuristics:

- forward selection:
 - 1. start with an empty model
 - 2. find an independent variable whose addition to the current model would yield the highest decrease in the AIC and add it to the model
 - 3. go to step 2 until AIC decreases
- backward elimination:
 - 1. start with the full model
 - 2. find an independent variable whose removal from the current model would decrease the AIC the most and eliminate it from the model
 - 3. go to step 2 until AIC decreases

Remark. (**) The above bi-level optimisation problem can be solved by implementing a genetic algorithm – see further chapter for more details.

Remark. (*) There are of course many other methods which also perform some form of variable selection, e.g., lasso regression. But these minimise a different objective.

First, a forward selection example. We need a data sample to work with:

Then, a formula that represents a model with no variables (model from which we'll start our search):

```
(model_empty <- Rating~1)</pre>
```

```
## Rating ~ 1
```

Last, we need a model that includes all the variables. We're too lazy to list all of them manually, therefore, we can use the model.frame() function to generate a corresponding formula:

```
(model_full <- formula(model.frame(Rating~., data=C))) # all variables</pre>
```

Rating ~ Income + Age + Education + Balance

Now we are ready.

```
step(lm(model_empty, data=C), # starting model
   scope=model_full,
                           # gives variables to consider
   direction="forward")
## Start: AIC=3055.8
## Rating ~ 1
##
##
              Df Sum of Sq RSS AIC
## + Income
              1 4058342 1823473 2695
              1 3749707 2132108 2743
## + Balance
             1 164567 5717248 3049
## + Age
## <none>
                          5881815 3056
## + Education 1 9631 5872184 3057
##
## Step: AIC=2694.7
## Rating ~ Income
##
              Df Sum of Sq
##
                              RSS AIC
## + Balance
              1 1465212 358261 2192
## <none>
                          1823473 2695
         1
## + Age
                    2836 1820637 2696
## + Education 1
                    1063 1822410 2697
##
## Step: AIC=2192.3
## Rating ~ Income + Balance
##
##
              Df Sum of Sq
                             RSS AIC
                    4119 354141 2191
## + Age
              1
## + Education 1
                    2692 355568 2192
## <none>
                          358261 2192
##
## Step: AIC=2190.7
## Rating ~ Income + Balance + Age
##
##
              Df Sum of Sq RSS AIC
## + Education 1 2926 351216 2190
## <none>
                          354141 2191
##
## Step: AIC=2190.1
## Rating ~ Income + Balance + Age + Education
##
## Call:
## lm(formula = Rating ~ Income + Balance + Age + Education, data = C)
##
```

Multiple Regression

Coefficients:
(Intercept) Income Balance Age Education
173.830 2.167 0.184 0.223 -0.960
formula(lm(Rating~., data=C))

Rating ~ Income + Age + Education + Balance

The full model has been selected.

And now for something completely different – a backward elimination example:

```
step(lm(model_full, data=C), # from
     scope=model_empty,
                             # to
     direction="backward")
## Start: AIC=2190.1
## Rating ~ Income + Age + Education + Balance
##
##
               Df Sum of Sq
                                RSS AIC
## <none>
                             351216 2190
## - Education 1
                       2926 354141 2191
## - Age
               1
                      4353 355568 2192
## - Balance
               1 1468466 1819682 2698
## - Income
                   1617191 1968406 2722
               1
##
## Call:
## lm(formula = Rating ~ Income + Age + Education + Balance, data = C)
##
## Coefficients:
## (Intercept)
                                            Education
                                                           Balance
                     Income
                                     Age
       173.830
                      2.167
                                   0.223
                                               -0.960
                                                             0.184
##
```

The full model is considered the best again.

Forward selection example - full dataset:

```
##
               Df Sum of Sa
                                RSS AIC
## + Balance
               1
                    7124258 2427627 3488
## + Income
                1
                    5982140 3569744 3643
               1 101661 9450224 4032
## + Age
## <none>
                            9551885 4034
## + Education 1
                       8675 9543210 4036
##
## Step: AIC=3488.4
## Rating ~ Balance
##
##
               Df Sum of Sq
                                RSS AIC
                1
                    1859749 567878 2909
## + Income
## + Age
                      98562 2329065 3474
                1
## <none>
                            2427627 3488
## + Education 1
                       5130 2422497 3490
##
## Step: AIC=2909.3
## Rating ~ Balance + Income
##
##
               Df Sum of Sa
                               RSS AIC
## <none>
                            567878 2909
## + Age
                       2142 565735 2910
                1
## + Education 1
                       1209 566669 2910
##
## Call:
## lm(formula = Rating ~ Balance + Income, data = C)
##
## Coefficients:
## (Intercept)
                    Balance
                                  Income
##
       145.351
                      0.213
                                   2.186
```

48

This procedure suggests including only the Balance and Income variables.

Backward elimination example – full dataset:

```
step(lm(model full, data=C), # full model
     scope=model_empty, # empty model
     direction="backward")
## Start: AIC=2910.9
## Rating ~ Income + Age + Education + Balance
##
##
               Df Sum of Sq
                                RSS AIC
## - Education
               1
                       1238 565735 2910
## - Age
               1
                       2172 566669 2910
## <none>
                             564497 2911
```

```
## - Income 1 1759273 2323770 3475
## - Balance
               1
                   2992164 3556661 3645
##
## Step: AIC=2909.8
## Rating ~ Income + Age + Balance
##
##
            Df Sum of Sq
                            RSS AIC
            1 2142 567878 2909
## - Age
## <none>
                         565735 2910
## - Income 1 1763329 2329065 3474
## - Balance 1 2991523 3557259 3643
##
## Step: AIC=2909.3
## Rating ~ Income + Balance
##
##
            Df Sum of Sq
                            RSS AIC
## <none>
                         567878 2909
## - Income 1 1859749 2427627 3488
## - Balance 1 3001866 3569744 3643
##
## Call:
## lm(formula = Rating ~ Income + Balance, data = C)
##
## Coefficients:
## (Intercept)
                    Income
                               Balance
                                 0.213
##
      145.351
                    2.186
```

This procedure gives the same results as forward selection (however, for other data sets this might not necessarily be the case).

2.3.3 Variable Transformation

So far we have been fitting linear models of the form:

$$Y = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p.$$

What about some non-linear models such as polynomials etc.? For example:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_1^2 + \beta_3 X_1^3 + \beta_4 X_2.$$

Solution: pre-process inputs by setting $X'_1 := X_1$, $X'_2 := X_1^2$, $X'_3 := X_1^3$, $X'_4 := X_2$ and fit a linear model:

$$Y = \beta_0 + \beta_1 X_1' + \beta_2 X_2' + \beta_3 X_3' + \beta_4 X_4'.$$

This trick works for every model of the form $Y = \sum_{i=1}^{k} \sum_{j=1}^{p} \varphi_{i,j}(X_j)$ for any k and any univariate functions $\varphi_{i,j}$.

Also, with a little creativity (and maths), we might be able to transform a few other models to a linear one, e.g.,

$$Y = be^{aX} \rightarrow \log Y = \log b + aX \rightarrow Y' = aX + b'$$

This is an example of a model's **linearisation**. However, not every model can be linearised. In particular, one that involves functions that are not invertible.

For example, here's a series of simple (p = 1) degree-*d* polynomial regression models of the form:

$$Y = \beta_0 + \beta_1 X + \beta_2 X^2 + \beta_3 X^3 + \dots + \beta_d X^d.$$

Such models can be fitted with the lm() function based on the formula of the form $Y \sim poly(X, d, raw=TRUE)$ or $Y \sim X+I(X^2)+I(X^3)+...$

```
f1_1 <- lm(Y~X1)
f1_3 <- lm(Y~X1+I(X1^2)+I(X1^3)) # also: Y~poly(X1, 3, raw=TRUE)
f1_10 <- lm(Y~poly(X1, 10, raw=TRUE))</pre>
```

Above we have fitted the polynomials of degrees 1, 3 and 10. Note that a polynomial of degree 1 is just a line.

Let us depict the three models:

```
plot(X1, Y, col="#000000aa", ylim=c(0, 1100))
x <- seq(min(X1), max(X1), length.out=101)
lines(x, predict(f1_1, data.frame(X1=x)), col="red", lwd=3)
lines(x, predict(f1_3, data.frame(X1=x)), col="blue", lwd=3)
lines(x, predict(f1_10, data.frame(X1=x)), col="darkgreen", lwd=3)</pre>
```

From Figure 2.12 we see that there's clearly a problem with the degree-10 polynomial.

2.3.4 Predictive vs. Descriptive Power

The above high-degree polynomial model (f1_10) is a typical instance of a phenomenon called an $\mathbf{overfit}$.

Clearly (based on our expert knowledge), the Rating shouldn't decrease as Balance increases.

In other words, f1_10 gives a better fit to data actually observed, but fails to produce good results for the points that are yet to come.

We say that it **generalises** poorly to unseen data.

Assume our true model is of the form:

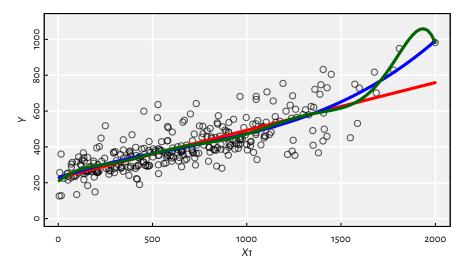


Figure 2.12: Polynomials of different degrees fitted to the Credit dataset

```
true_model <- function(x) 3*x^3+5</pre>
```

Let's generate the following random sample from this model (with Y subject to error), see Figure 2.13:

```
set.seed(1234) # to assure reproducibility
n <- 25
X <- runif(n, min=0, max=1)</pre>
Y <- true model(X)+rnorm(n, sd=0.2) # add normally-distributed noise
plot(X, Y)
x <- seq(0, 1, length.out=101)</pre>
lines(x, true_model(x), col=2, lwd=3, lty=2)
Let's fit polynomials of different degrees, see Figure 2.14.
plot(X, Y)
lines(x, true_model(x), col=2, lwd=3, lty=2)
dmax <- 11 # maximal polynomial degree
MSE_train <- numeric(dmax)</pre>
MSE_test <- numeric(dmax)</pre>
for (d in 1:dmax) { # for every polynomial degree
    f <- lm(Y~poly(X, d, raw=TRUE)) # fit a d-degree polynomial
    y <- predict(f, data.frame(X=x))</pre>
    lines(x, y, col=d)
    # MSE on given random X,Y:
```

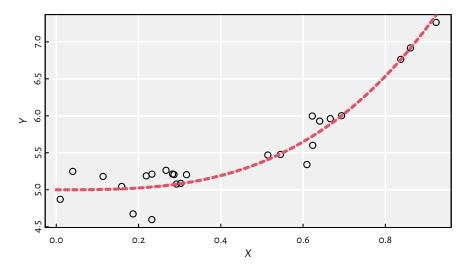


Figure 2.13: Synthetic data generated by means of the formula $Y = 3x^3 + 5$ (+ noise)

```
MSE_train[d] <- mean(f$residuals^2)
# MSE on many more points:
MSE_test[d] <- mean((y-true_model(x))^2)
```

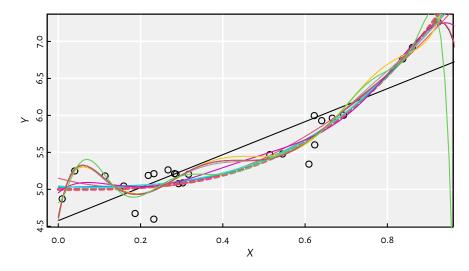


Figure 2.14: Polynomials fitted to our synthetic dataset

Some of the polynomials are fitted too well!

}

Remark (*) The oscillation of the high-degree polynomials at the domain boundaries is known as the Runge phenomenon.

Compare the mean squared error (MSE) for the observed vs. future data points, see Figure 2.15.

```
matplot(1:dmax, cbind(MSE_train, MSE_test), type="b",
    ylim=c(1e-3, 2e3), log="y", pch=1:2,
    xlab="Model complexity (polynomial degree)",
    ylab="MSE")
legend("topleft", legend=c("MSE on original data", "MSE on the whole range"),
    lty=1:2, col=1:2, pch=1:2, bg="white")
```

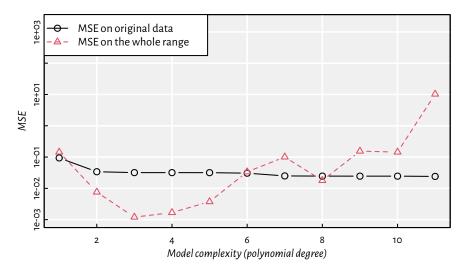


Figure 2.15: MSE on the dataset used to construct the model vs. MSE on a whole range of points as function of the polynomial degree

Note the logarithmic scale on the y axis.

This is a very typical behaviour!

- A model's fit to observed data improves as the model's complexity increases.
- A model's generalisation to unseen data initially improves, but then becomes worse.
- In the above example, the sweet spot is at a polynomial of degree 3, which is exactly our true underlying model.

Hence, most often we should be interested in the accuracy of the predictions made in the case of unobserved data.

If we have a data set of a considerable size, we can divide it (randomly) into two parts:

- *training sample* (say, 60% or 80%) used to fit a model
- test sample (the remaining 40% or 20%) used to assess its quality (e.g., using MSE)

More on this issue in the chapter on Classification.

Remark. (*) We shall see that sometimes a train-test-validate split will be necessary, e.g., 60-20-20%.

2.4 Exercises in R

2.4.1 Anscombe's Quartet Revisited

Consider the anscombe database once again:

print(anscombe) # `anscombe` is a built-in object

##		x1	x2	x٦	×4	v1	v2	у3	ν4
##	1	10	10	10	8	8.04	9.14	7.46	6.58
##	2	8	8	8	8	6.95	8.14	6.77	5.76
##	3	13	13	13	8	7.58	8.74	12.74	7.71
##	4	9	9	9	8	8.81	8.77	7.11	8.84
##	5	11	11	11	8	8.33	9.26	7.81	8.47
##	6	14	14	14	8	9.96	8.10	8.84	7.04
##	7	6	6	6	8	7.24	6.13	6.08	5.25
##	8	4	4	4	19	4.26	3.10	5.39	12.50
##	9	12	12	12	8	10.84	9.13	8.15	5.56
##	10	7	7	7	8	4.82	7.26	6.42	7.91
##	11	5	5	5	8	5.68	4.74	5.73	6.89

Recall that in the previous Chapter we have split the above data into four data frames ans1, ..., ans4 with columns x and y.

Exercise 2.2 In ans1, fit a regression line to the data set as-is.

Solution.

We've done that already, see Figure 2.16. What a wonderful exercise, thank you – effective learning is often done by repeating stuff.

```
ans1 <- data.frame(x=anscombe$x1, y=anscombe$y1)
f1 <- lm(y~x, data=ans1)
plot(ans1$x, ans1$y)
abline(f1, col="red")</pre>
```

Exercise 2.3 In ans2, fit a quadratic model $(y = a + bx + cx^2)$.

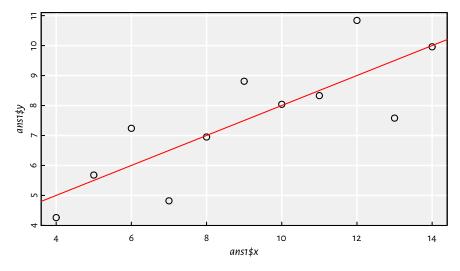


Figure 2.16: Fitted regression line for ans1

Solution.

```
How to fit a polynomial model is explained above.
ans2 <- data.frame(x=anscombe$x2, y=anscombe$y2)
f2 <- lm(y~x+I(x^2), data=ans2)
plot(ans2$x, ans2$y)
x_plot <- seq(4, 14, by=0.1)
y_plot <- predict(f2, data.frame(x=x_plot))
lines(x_plot, y_plot, col="red")
```

Comment: From Figure 2.17 we see that it's an almost-perfect fit! Clearly, the second Anscombe dataset isn't a case of linearly dependent variables.

Exercise 2.4 In ans 3, remove the obvious outlier from data and fit a regression line.

Solution.

Let's plot the data set first, see Figure 2.18.

```
ans3 <- data.frame(x=anscombe$x3, y=anscombe$y3)
plot(ans3$x, ans3$y)</pre>
```

Indeed, the observation at $x \simeq 13$ is an obvious outlier. Perhaps the easiest way to remove it is to call:

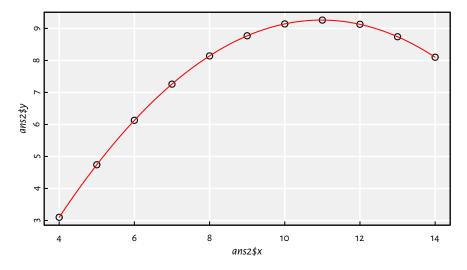


Figure 2.17: Fitted quadratic model for ans2

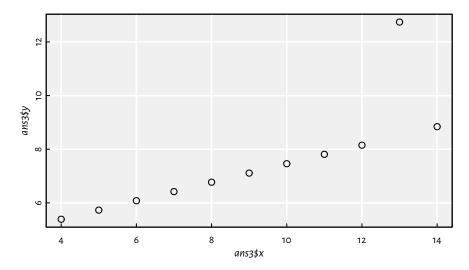


Figure 2.18: Scatter plot for ans3

ans3b <- ans3[ans3\$y<=12,] # the outlier is definitely at y>12

We could also use the condition y < max(y), amongst others.

Now let's fit the linear model:

```
f3b <- lm(y~x, data=ans3b)
plot(ans3b$x, ans3b$y)
abline(f3b, col="red")</pre>
```

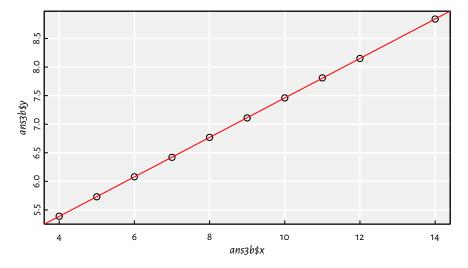


Figure 2.19: Scatter plot for ans 3 with the outlier removed and the fitted linear model

Comment: Now Figure 2.19 is what we call linearly correlated data. By the way, Pearson's coefficient now equals 1.

2.4.2 Countries of the World – Simple models involving the GDP per capita

Let's consider the World Factbook 2020 dataset (see this book's datasets folder). It consists of country names, their population, area, GDP, mortality rates etc. We have scraped it from the CIA website at https://www.cia.gov/library/publications/the-world-factbook/docs/rankorderguide.html and compiled into a single file on 3 April 2020.

Here is a preview of a few features for 3 selected countries (see help("%in%")):

```
factbook[factbook$country %in%
    c("Australia", "New Zealand", "United States"),
    c("country", "area", "population", "gdp_per_capita_ppp")]
##
             country
                        area population gdp_per_capita_ppp
## 15
           Australia 7741220
                               25466459
                                                      50400
## 169
         New Zealand 268838
                                4925477
                                                      39000
## 247 United States 9833517 332639102
                                                      59800
```

Exercise 2.5 List the 10 countries with the highest GDP per capita.

Solution.

To recall, to generate a list of indexes that produce an ordered version of a numeric vector, we need to call the order() function.

```
which_top <- tail(order(factbook$gdp_per_capita_ppp, na.last=FALSE), 10)
factbook[which_top, c("country", "gdp_per_capita_ppp")]</pre>
```

##		country	gdp_per_capita_ppp
##	113	Ireland	73200
##	35	Brunei	78900
##	114	Isle of Man	84600
##	211	Singapore	94100
##	26	Bermuda	99400
##	141	Luxembourg	105100
##	157	Monaco	115700
##	142	Macau	122000
##	192	Qatar	124100
##	139	Liechtenstein	139100

By the way, the reported values are in USD.

Question: Which of these countries are tax havens?

Exercise 2.6 Find the 5 most positively and the 5 most negatively correlated variables with the gdp_per_capita_ppp feature (of course, with respect to the Pearson coefficient).

Solution.

This can be solved via a call to cor(). Note that we need to make sure that missing vales are omitted from computations. A quick glimpse at the manual page (?cor) reveals that computing the correlation between a column and all the other ones (of course, except country, which is non-numeric) can be performed as follows.

```
r <- cor(factbook$gdp_per_capita_ppp,</pre>
    factbook[,!(names(factbook) %in% c("country", "gdp_per_capita_ppp"))],
    use="complete.obs")[1,]
or <- order(r) # ordering permutation (indexes)</pre>
r[head(or, 5)] # first 5 ordered indexes
##
     infant mortality rate maternal mortality rate
                                                                   birth rate
##
                   -0.74658
                                            -0.67005
                                                                      -0.60822
##
                death rate
                               total fertility rate
                                            -0.56725
##
                   -0.57216
r[tail(or, 5)] # last 5 ordered indexes
##
          natural_gas_production
                                           gross_national_saving
##
                          0.56898
                                                          0.61133
##
                       median age obesity adult prevalence rate
##
                          0.62090
                                                          0.63681
##
        life expectancy at birth
```

Comment: "Live long and prosper" just gained a new meaning. Richer countries have lower infant and maternal mortality rates, lower birth rates, but higher life expectancy and obesity prevalence. Note, however, that correlation is not causation: we are unlikely to increase the GDP by asking people to put on weight.

0.75461

Exercise 2.7 Fit simple regression models where the per capita GDP explains its four most correlated variables (four individual models). Draw them on a scatter plot. Compute the root mean squared errors (RMSE), mean absolute errors (MAE) and the coefficients of determination (R^2).

Solution.

##

The four most correlated variables (we should look at the absolute value of the correlation coefficient now – recall that it is the correlation of 0 that means no linear dependence; 1 and -1 show a strong association between a pair of variables) are:

```
(most_correlated <- names(r)[tail(order(abs(r)), 4)])</pre>
```

```
## [1] "obesity_adult_prevalence_rate" "maternal_mortality_rate"
## [3] "infant_mortality_rate" "life_expectancy_at_birth"
```

We could take the above column names and construct four formulas manually, e.g., by writing gdp_per_capita_ppp~life_expectancy_at_birth, but we are lazy. Being lazy when it comes to computer programming is often a virtue, not a flaw in one's character.

Instead, we will run a *for* loop that extracts the pairs of interesting columns and constructs a formula based on two vectors $(Im(Y \sim X))$, see Figure 2.20.

```
par(mfrow=c(2, 2)) # 4 plots on a 2x2 grid
for (i in 1:4) {
    print(most_correlated[i])
    X <- factbook[, "gdp_per_capita_ppp"]</pre>
    Y <- factbook[,most_correlated[i]]</pre>
    f < - lm(Y \sim X)
    print(cbind(RMSE=sqrt(mean(f$residuals^2)),
                MAE=mean(abs(f$residuals)),
                 R2=summary(f)$r.squared))
    plot(X, Y, xlab="gdp_per_capita_ppp",
               ylab=most correlated[i])
    abline(f, col="red")
}
## [1] "obesity_adult_prevalence_rate"
##
          RMSE
                  MAE
                             R2
## [1,] 11.041 8.1589 0.062196
## [1] "maternal mortality rate"
          RMSE
##
                  MAE
                            R2
## [1,] 204.93 146.53 0.21481
## [1] "infant_mortality_rate"
##
          RMSE
                  MAE
                           R2
## [1,] 15.746 12.166 0.3005
## [1] "life_expectancy_at_birth"
##
          RMSE
                  MAE
                            R2
## [1,] 5.4292 4.3727 0.43096
```

Recall that the root mean squared error is the square root of the arithmetic mean of the squared residuals. Mean absolute error is the average of the absolute values of the residuals. The coeffi-

cient of determination is given by: $R^2(f) = 1 - \frac{\sum_{i=1}^n (y_i - f(\mathbf{x}_{i,\cdot}))^2}{\sum_{i=1}^n (y_i - \bar{y})^2}$.

Comment: Unfortunately, we were misled by the high correlation coefficients between the Xs and Ys: the low actual R^2 scores indicate that these models should not be deemed trustworthy. Note that 3 of the plots are evidently L-shaped.

Fun fact: (*) Interestingly, it can be shown that R^2 (in the case of the linear models fitted by minimising the SSR) is the square of the correlation between the true *Ys* and the predicted *Ys*:

```
X <- factbook[, "gdp_per_capita_ppp"]
Y <- factbook[,most_correlated[i]]
f <- lm(Y~X, y=TRUE)
print(summary(f)$r.squared)</pre>
```

[1] 0.43096

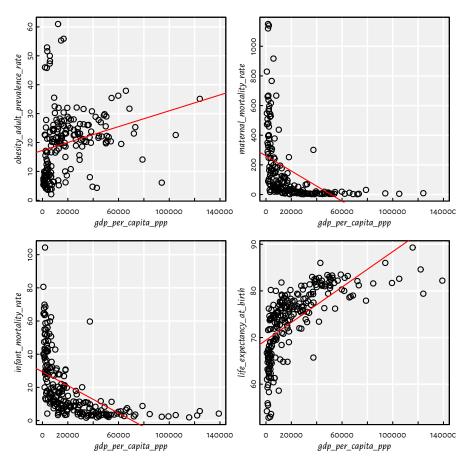


Figure 2.20: A scatter plot matrix and regression lines for the 4 variables most correlated with the per capita GDP

print(cor(f\$fitted.values, f\$y)^2)

[1] 0.43096

Side note: Do note that RMSE and MAE are interpretable: for instance, average error of life expectancy prediction based on the GDP is 4-5 years. Recall that you can find the information on the variables' units of measure at https://www.cia.gov/library/publications/the-world-factbook/docs/rankorderguide.html.

2.4.3 Countries of the World – Most correlated variables (*)

Let's get back to the World Factbook 2020 dataset (world_factbook_2020.csv).

Exercise 2.8 Create a data frame C with three columns named col1, col2 and r and p(p - 1)/2 rows, where p is the number of numeric features in factbook. Every row should represent a unique pair of column names in factbook (we do not distinguish between a, b and b, a) of correlation coefficients between them.

Solution.

First we will solve this exercise considering only 4 numeric features in our dataset, so that we can keep track of how the R expressions we evaluate actually work.

Let us compute the Pearson coefficients between chosen pairs of variables.

##		агеа	median_age	birth_rate	exports
##	агеа	1.000000	0.044524	-0.031995	0.49259
##	median_age	0.044524	1.000000	-0.921592	0.29973
##	birth_rate	-0.031995	-0.921592	1.000000	-0.24296
##	exports	0.492586	0.299727	-0.242955	1.00000

Note that the R matrix has 1.0 on the diagonal (where each entry represents a correlation between a variable and itself). Moreover, it is symmetric around the diagonal - R[i, j] == R[j, i], because it is the correlation between the same pair of variables. Hence, from now on we may be interested in the elements below the diagonal. We can get access to them by using lower.tri() ("lower triangle").

R[lower.tri(R)]

[1] 0.044524 -0.031995 0.492586 -0.921592 0.299727 -0.242955

This is already the 3rd column of the data frame we are asked to generate, which should look like:

col1 col2 г ## 1 median age area 0.044524 ## 2 birth rate area -0.031995 exports ## 3 area 0.492586 ## 4 birth_rate median_age -0.921592 ## 5 exports median age 0.299727 exports birth rate -0.242955 ## 6

How the generate col1 and col2? One idea is to take the "lower triangles" of the following matrices:

```
##
        [,1]
                     [,2]
                                  [,3]
                                               [,4]
## [1,] "area"
                     "агеа"
                                  "area"
                                               "area"
## [2,] "median_age" "median_age" "median_age" "median_age"
## [3,] "birth rate" "birth rate" "birth rate" "birth rate"
## [4,] "exports"
                    "exports"
                                 "exports"
                                              "exports"
and:
               [,2]
                                         [,4]
##
        [,1]
                            [,3]
## [1,] "area" "median_age" "birth_rate" "exports"
## [2,] "area" "median_age" "birth_rate" "exports"
## [3,] "area" "median_age" "birth_rate" "exports"
## [4,] "area" "median_age" "birth_rate" "exports"
```

Here is a complete solution for all the features is factbook:

Comment: In "classical" programming languages we would perhaps have used of a double (nested) for loop here (a less readable solution).

Exercise 2.9 Find the 5 most correlated pairs of variables.

Solution.

This can be done by ordering the rows of C in decreasing order of absolute values of C\$r, and then choosing the first 5 rows.

```
C_top <- head(C[order(abs(C$r), decreasing=TRUE),], 5)
knitr::kable(C_top)</pre>
```

	colı	col2	r
1687	electricity_installed_generating_capacity	electricity_production	0.99942
1684	electricity_consumption	electricity_production	0.99921
88	labor_force	population	0.99862
1718	electricity_installed_generating_capacity	electricity_consumption	0.99815
1300	telephones_mobile_cellular	labor_force	0.99793

Comment: The most correlated pairs of features are not really "mind-blowing"...

Exercise 2.10 Fit simple regression models for the most correlated pair of variables.

Solution.

There is a degree of ambiguity here: should coll or rather coll be treated as the dependent variable in our model? Let's do it either way.

To learn something new, which is exactly why we are all here, we will create the formulas programmatically, by first concatenating (joining) appropriate strings (note that in order to input a double quotes character, we need to proceed in with a backslash), and then calling the formula() function.

```
form <- formula(paste(C_top[1,2], "~", C_top[1,1]))</pre>
f <- lm(form, data=factbook)</pre>
print(f)
##
## Call:
## lm(formula = form, data = factbook)
##
## Coefficients:
##
                                   (Intercept)
                                      7.95e+08
##
## electricity_installed_generating_capacity
##
                                      3.63e+03
plot(factbook[,C_top[1,1]], factbook[,C_top[1,2]],
    xlab=C_top[1,1], ylab=C_top[1,2])
abline(f, col="red")
```

```
Figure 2.21 depicts the fitted model.
```

2.4.4 Countries of the World – A non-linear model based on the GDP per capita

Let's revisit the World Factbook 2020 dataset (world_factbook_2020.csv).

Exercise 2.11 Draw a histogram of the empirical distribution of the GDP per capita. Moreover, draw a histogram of the logarithm of the GDP/person.

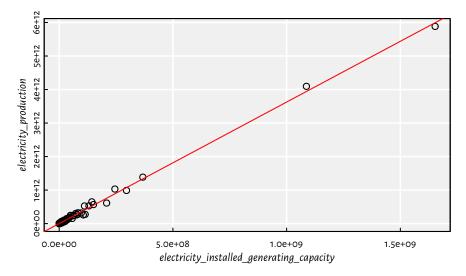


Figure 2.21: Most correlated pair of variables and the invisible regression line

Solution.

```
par(mfrow=c(1,2))
hist(factbook$gdp_per_capita_ppp, col="white", main=NA)
hist(log(factbook$gdp_per_capita_ppp), col="white", main=NA)
```

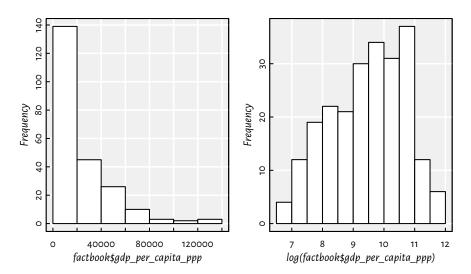


Figure 2.22: Histograms of the empirical distribution of the GDP per capita with linear (left) and log (right) scale on the X axis

Comment: In Figure 2.22 we see that distribution of the GDP is right-skewed: most countries have small GDP. However, few of them (those in the "right tail" of the distribution) are very very rich (hey, how about taxing the richest countries?!). There is the famous observation made by V. Pareto stating that most assets are in the hands of the "wealthy minority" (compare: power law, rich-get-richer rule, preferential attachment in complex networks). Interestingly, many real-world-phenomena are distributed similarly (e.g., the popularity of web pages, the number of followers of Instagram profiles). It is frequently the case that the logarithm of the aforementioned variable looks more "normal" (is bell-shaped).

Side note: "The" logarithm most often refers to the logarithm base e, $\log x = \log_e x$, where $e \simeq 2.72$ is the Euler constant, see exp(1) in R. Note that you can only compute logarithms of positive real numbers.

Non-technical audience might be confused when asked to contemplate the distribution of the logarithm of a variable. Let's make it more user-friendly (on the other hand, we could've asked them to harden up...) by nicely re-labelling the X axis, see Figure 2.23.



Figure 2.23: Histogram of the empirical distribution of the GDP per capita now with human-readable X axis labels (not the logarithmic scale)

Multiple Regression

Comment: This is still a plot of the logarithm of the distribution of the per capita GDP, but it's somehow "hidden" behind the human-readable axis labels. Nice.

Exercise 2.12 Fit a simple linear model of life_expectancy_at_birth as a function of gdp_per_capita_ppp.

Solution.

Easy. We have already done than in one of the previous exercises. Yet, to learn something new, let's note that the plot() function accepts formulas as well.

```
f <- lm(life_expectancy_at_birth~gdp_per_capita_ppp, data=factbook)
plot(life_expectancy_at_birth~gdp_per_capita_ppp, data=factbook)
abline(f, col="purple")
summary(f)$r.squared</pre>
```

[1] 0.43096

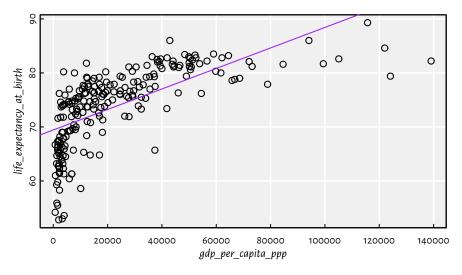


Figure 2.24: Linear model fitted for life expectancy vs. GDP/person

Comment: From Figure 2.24 we see that this is not a good model.

Exercise 2.13 Draw a scatter plot of life_expectancy_at_birth as a function gdp_per_capita_ppp, with the X axis being logarithmic. Compute the correlation coefficient between log(gdp_per_capita_ppp) and life_expectancy_at_birth.

Solution.

We could apply the log()-transformation manually and generate fancy X axis labels ourselves. However, the plot() function has the log argument (see ?plot.default) which provides us with all we need, see Figure 2.25.

```
plot(factbook$gdp_per_capita_ppp,
     factbook$life_expectancy_at_birth,
     log="x")
     90
                                                                                          0
                                                                           0
                                                                                       0
 factbook$life_expectancy_at_birth
                                     0
     8
                                                C
                            0
                                                                          O
                        \cap
                                      000000
     R
                                  000
                                                             0
                                                       0
                          \alpha
          0
                       ğ
                                                                         0
                                                     000
                  റ
                                       റ
                                           00
            О
     9
                       0
                  0
                                                    0
                   0 0
          0
                                  00
             1e+03
                        2e+03
                                       5e+03
                                                  1e+04
                                                             2e+04
                                                                           5e+04
                                                                                      1e+05
                                      factbook$gdp_per_capita_ppp
```

Figure 2.25: Scatter plot of life expectancy vs. GDP/person with log scale on the X axis

Here is the linear correlation coefficient between the logarithm of the GDP/person and the life expectancy.

[1] 0.80665

The correlation is quite high, hence the following task.

Exercise 2.14 Fit a model predicting life_expectancy_at_birth by means of log(gdp_per_capita_ppp).

Solution.

We would like to fit a model of the form $Y = a \log X + b$. The formula $life_expectancy_at_birth~log(gdp_per_capita_ppp)$ should do the trick here.

f <- lm(life_expectancy_at_birth~log(gdp_per_capita_ppp), data=factbook)
plot(life_expectancy_at_birth~log(gdp_per_capita_ppp), data=factbook)
abline(f, col="red", lty=3)
f\$coefficients</pre>

##	(Intercept)	<pre>log(gdp_per_capita_ppp)</pre>
##	28.3064	4.8178

summary(f)\$r.squared

[1] 0.65069

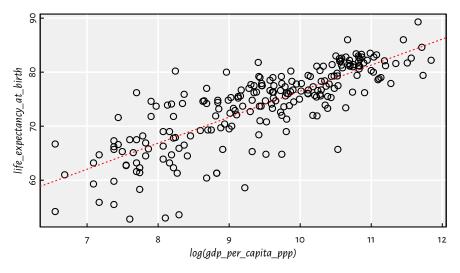


Figure 2.26: Linear model fitted for life expectancy vs. the logarithm of GDP/person

Comment: That is an okay model (in terms of the coefficient of determination), see Figure 2.26.

Exercise 2.15 Draw the fitted logarithmic model on a scatter plot with a standard, non-logarithmic X axis.

Solution.

The model fitted above is of the form $Y \simeq 4.82 \log X + 28.31$. To depict it on a plot with linear (non-logarithmic) axes, we can compute this formula on multiple points by hand, see Figure 2.27.

plot(factbook\$gdp_per_capita_ppp, factbook\$life_expectancy_at_birth)

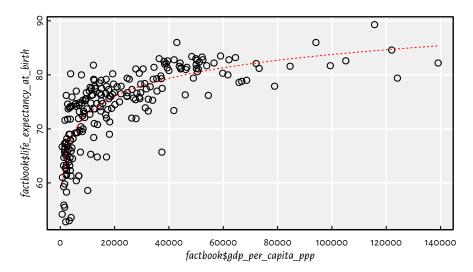


Figure 2.27: Logarithmic model fitted for life expectancy vs. GDP/person

Comment: Well, people are not immortal... The original (linear) model didn't really take that into account. Also, recall that correlation is not causation. Moreover, there is a lot of variability at an individual level. Being born in a less-wealthy country (e.g., not in a tax haven), doesn't mean you don't have the whole life ahead of you. Do the cool stuff, do something for the others. Life's not about money.

2.4.5 Countries of the World – A multiple regression model for the per capita GDP

Let's play with World Factbook 2020 (world_factbook_2020.csv) once again. World is an interesting place, so we're far from being bored with this dataset.

Let's restrict ourselves to the following columns, mostly related to imports and exports:

```
factbookn <- factbook[c("gdp_purchasing_power_parity",
    "imports", "exports", "electricity_exports",
    "electricity_imports", "military_expenditures",
    "crude_oil_exports", "crude_oil_imports",
    "natural_gas_exports", "natural_gas_imports",
    "reserves_of_foreign_exchange_and_gold")]
```

Let's compute the per capita versions of the above, by dividing all values by each country's population:

```
for (i in 1:ncol(factbookn))
    factbookn[[i]] <- factbookn[[i]]/factbook$population</pre>
```

We are going to build a few multiple regression models using the step() function, which is not too fond of missing values, therefore they should be removed first:

```
factbookn <- na.omit(factbookn)
c(nrow(factbook), nrow(factbookn)) # how many countries were omitted?</pre>
```

[1] 261 157

Exercise 2.16 Build a model for gdp_purchasing_power_parity as a function of imports and exports (all per capita).

Solution.

Let's first take a look at how the aforementioned variables are related to each other, see Figure 2.28.

```
pairs(factbookn[c("gdp_purchasing_power_parity", "imports", "exports")])
cor(factbookn[c("gdp_purchasing_power_parity", "imports", "exports")])
```

##		gdp_purchasing_power_parity	imports exports
##	gdp_purchasing_power_parity	1.00000	0.82891 0.81899
##	imports	0.82891	1.00000 0.94241
##	exports	0.81899	0.94241 1.00000

They are nicely correlated. Moreover, they are on a similar scale ("tens of thousands of USD per capita").

Fitting the requested model yields:

```
options(scipen=10) # prefer "decimal" over "scientific" notation
f1 <- lm(gdp_purchasing_power_parity~imports+exports, data=factbookn)
f1$coefficients</pre>
```

(Intercept) imports exports ## 9852.53813 1.44194 0.78067

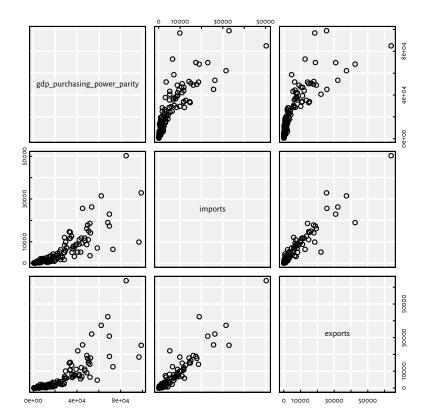


Figure 2.28: Scatter plot matrix for GDP, imports and exports

```
summary(f1)$adj.r.squared
```

[1] 0.69598

Exercise 2.17 Use forward selection to come up with a model for gdp_purchasing_power_parity per capita.

Solution.

```
(model_empty <- gdp_purchasing_power_parity~1)</pre>
```

gdp_purchasing_power_parity ~ 1

```
(model_full <- formula(model.frame(gdp_purchasing_power_parity~., data=factbookn)))</pre>
```

```
## gdp_purchasing_power_parity ~ imports + exports + electricity_exports +
       electricity_imports + military_expenditures + crude_oil_exports +
##
       crude_oil_imports + natural_gas_exports + natural_gas_imports +
##
       reserves_of_foreign_exchange_and_gold
##
f2 <- step(lm(model_empty, data=factbookn),</pre>
    scope=model_full,
    direction="forward", trace=0)
f2
##
## Call:
## lm(formula = gdp purchasing power parity ~ imports + crude oil exports +
       crude_oil_imports + electricity_imports + natural_gas_imports,
##
##
       data = factbookn)
##
## Coefficients:
##
           (Intercept)
                                     imports
                                                crude oil exports
                                        1.77
                                                         128472.22
##
               7603.24
##
     crude_oil_imports electricity_imports natural_gas_imports
##
             100781.64
                                        1.62
                                                              3.13
```

```
summary(f2)$adj.r.squared
```

[1] 0.7865

Comment: Interestingly, it's mostly the import-related variables that contribute to the GDP per capita. However, the model is not perfect, so we should refrain ourselves from building a brand new economic theory around this "discovery". On the other hand, you know what they say: all models are wrong, but some might be useful. Note that we used the adjusted R^2 coefficient to correct for the number of variables in the model so as to make it more comparable with the coefficient corresponding to the f1 model.

Exercise 2.18 Use backward elimination to construct a model for gdp_purchasing_power_parity per capita.

Solution.

```
##
## Call:
## lm(formula = gdp purchasing power parity ~ imports + electricity imports +
       crude oil exports + crude oil imports + natural gas imports,
##
##
       data = factbookn)
##
## Coefficients:
                                     imports electricity_imports
##
           (Intercept)
               7603.24
##
                                        1.77
                                                              1.62
##
     crude_oil_exports
                           crude_oil_imports natural_gas_imports
##
             128472.22
                                   100781.64
                                                              3.13
summary(f3)$adj.r.squared
```

[1] 0.7865

74

Comment: This is the same model as the one found by forward selection, i.e., f2.

2.5 Outro

2.5.1 Remarks

Multiple regression is simple, fast to apply and interpretable.

Linear models go beyond fitting of straight lines and other hyperplanes!

A complex model may overfit and hence generalise poorly to unobserved inputs.

Note that the SSR criterion makes the models sensitive to outliers.

Remember:

good models

=

better understanding of the modelled reality + better predictions

=

more revenue, your boss' happiness, your startup's growth etc.

2.5.2 Other Methods for Regression

Other example approaches to regression:

• ridge regression,

Multiple Regression

- lasso regression,
- least absolute deviations (LAD) regression,
- multiadaptive regression splines (MARS),
- K-nearest neighbour (K-NN) regression, see FNN::knn.reg() in R,
- regression trees,
- support-vector regression (SVR),
- neural networks (also deep) for regression.

2.5.3 Derivation of the Solution (**)

We would like to find an analytical solution to the problem of minimising of the sum of squared residuals:

$$\min_{\beta_0,\beta_1,\dots,\beta_p \in \mathbb{R}} E(\beta_0,\beta_1,\dots,\beta_p) = \sum_{i=1}^n \left(\beta_0+\beta_1 x_{i,1}+\dots+\beta_p x_{i,p}-y_i\right)^2$$

This requires computing the p + 1 partial derivatives $\partial E / \partial \beta_j$ for j = 0, ..., p.

The partial derivatives are very similar to each other; $\frac{\partial E}{\partial \beta_0}$ is given by:

$$\frac{\partial E}{\partial \beta_0}(\beta_0,\beta_1,\ldots,\beta_p) = 2\sum_{i=1}^n \left(\beta_0 + \beta_1 x_{i,1} + \cdots + \beta_p x_{i,p} - y_i\right)$$

and $\frac{\partial E}{\partial \beta_j}$ for j > 0 is equal to:

$$\frac{\partial E}{\partial \beta_j}(\beta_0, \beta_1, \dots, \beta_p) = 2 \sum_{i=1}^n x_{i,j} \left(\beta_0 + \beta_1 x_{i,1} + \dots + \beta_p x_{i,p} - y_i \right)$$

Then all we need to do is to solve the system of linear equations:

$$\begin{cases} \frac{\partial E}{\partial \beta_0}(\beta_0, \beta_1, \dots, \beta_p) &= 0\\ \frac{\partial E}{\partial \beta_1}(\beta_0, \beta_1, \dots, \beta_p) &= 0\\ \vdots\\ \frac{\partial E}{\partial \beta_p}(\beta_0, \beta_1, \dots, \beta_p) &= 0 \end{cases}$$

The above system of p + 1 linear equations, which we are supposed to solve for $\beta_0, \beta_1, \dots, \beta_p$:

$$\begin{cases} 2\sum_{i=1}^{n} (\beta_{0} + \beta_{1}x_{i,1} + \dots + \beta_{p}x_{i,p} - y_{i}) = 0\\ 2\sum_{i=1}^{n} x_{i,1} (\beta_{0} + \beta_{1}x_{i,1} + \dots + \beta_{p}x_{i,p} - y_{i}) = 0\\ \vdots\\ 2\sum_{i=1}^{n} x_{i,p} (\beta_{0} + \beta_{1}x_{i,1} + \dots + \beta_{p}x_{i,p} - y_{i}) = 0 \end{cases}$$

can be rewritten as:

$$\begin{pmatrix} \sum_{i=1}^{n} (\beta_{0} + \beta_{1}x_{i,1} + \dots + \beta_{p}x_{i,p}) \\ \sum_{i=1}^{n} x_{i,1} (\beta_{0} + \beta_{1}x_{i,1} + \dots + \beta_{p}x_{i,p}) \\ \vdots \\ \sum_{i=1}^{n} x_{i,p} (\beta_{0} + \beta_{1}x_{i,1} + \dots + \beta_{p}x_{i,p}) \\ &= \sum_{i=1}^{n} x_{i,p}y_{i}$$

and further as:

$$\begin{cases} \beta_0 n + \beta_1 \sum_{i=1}^n x_{i,1} + \dots + \beta_p \sum_{i=1}^n x_{i,p} = \sum_{i=1}^n y_i \\ \beta_0 \sum_{i=1}^n x_{i,1} + \beta_1 \sum_{i=1}^n x_{i,1} x_{i,1} + \dots + \beta_p \sum_{i=1}^n x_{i,1} x_{i,p} = \sum_{i=1}^n x_{i,1} y_i \\ \vdots \\ \beta_0 \sum_{i=1}^n x_{i,p} + \beta_1 \sum_{i=1}^n x_{i,p} x_{i,1} + \dots + \beta_p \sum_{i=1}^n x_{i,p} x_{i,p} = \sum_{i=1}^n x_{i,p} y_i \end{cases}$$

Note that the terms involving $x_{i,j}$ and y_i (the sums) are all constant – these are some fixed real numbers. We have learned how to solve such problems in high school.

Exercise 2.19 Try deriving the analytical solution and implementing it for p = 2. Recall that in the previous chapter we solved the special case of p = 1.

2.5.4 Solution in Matrix Form (***)

Assume that $\mathbf{X} \in \mathbb{R}^{n \times p}$ (a matrix with inputs), $\mathbf{y} \in \mathbb{R}^{n \times 1}$ (a column vector of reference outputs) and $\boldsymbol{\beta} \in \mathbb{R}^{(p+1) \times 1}$ (a column vector of parameters).

Firstly, note that a linear model of the form:

$$f_{\beta}(\mathbf{x}) = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

can be rewritten as:

$$f_{\boldsymbol{\beta}}(\mathbf{x}) = \beta_0 1 + \beta_1 x_1 + \dots + \beta_p x_p = \dot{\mathbf{x}} \boldsymbol{\beta},$$

where $\dot{\mathbf{x}} = [1 x_1 x_2 \cdots x_p].$

Similarly, if we assume that $\dot{\mathbf{X}} = [1 \mathbf{X}] \in \mathbb{R}^{n \times (p+1)}$ is the input matrix with a prepended column of 1s, i.e., $1 = [1 1 \cdots 1]^T$ and $\dot{x}_{i,0} = 1$ (for brevity of notation the columns added will have index 0), $\dot{x}_{i,j} = x_{i,j}$ for all $j \ge 1$ and all *i*, then:

$$\hat{\mathbf{y}} = \dot{\mathbf{X}}\boldsymbol{\beta}$$

gives the vector of predicted outputs for every input point.

This way, the sum of squared residuals

$$E(\beta_0, \beta_1, \dots, \beta_p) = \sum_{i=1}^n \left(\beta_0 + \beta_1 x_{i,1} + \dots + \beta_p x_{i,p} - y_i\right)^2$$

can be rewritten as:

$$E(\boldsymbol{\beta}) = \|\dot{\mathbf{X}}\boldsymbol{\beta} - \mathbf{y}\|^2,$$

where as usual $\|\cdot\|^2$ denotes the squared Euclidean norm.

Recall that this can be re-expressed as:

$$E(\boldsymbol{\beta}) = (\dot{\mathbf{X}}\boldsymbol{\beta} - \mathbf{y})^T (\dot{\mathbf{X}}\boldsymbol{\beta} - \mathbf{y}).$$

In order to find the minimum of E w.r.t. β , we need to find the parameters that make the partial derivatives vanish, i.e.:

$$\begin{cases} \frac{\partial E}{\partial \beta_0}(\boldsymbol{\beta}) &= 0\\ \frac{\partial E}{\partial \beta_1}(\boldsymbol{\beta}) &= 0\\ \vdots\\ \frac{\partial E}{\partial \beta_p}(\boldsymbol{\beta}) &= 0 \end{cases}$$

Remark. (***) Interestingly, the above can also be expressed in matrix form, using the special notation:

$$\nabla E(\boldsymbol{\beta}) = 0$$

Here, ∇E (nabla symbol = differential operator) denotes the function gradient, i.e., the vector of all partial derivatives. This is nothing more than syntactic sugar for this quite commonly applied operator.

Anyway, the system of linear equations we have derived above:

$$\begin{cases} \beta_0 n + \beta_1 \sum_{i=1}^n x_{i,1} + \dots + \beta_p \sum_{i=1}^n x_{i,p} &= \sum_{i=1}^n y_i \\ \beta_0 \sum_{i=1}^n x_{i,1} + \beta_1 \sum_{i=1}^n x_{i,1} x_{i,1} + \dots + \beta_p \sum_{i=1}^n x_{i,1} x_{i,p} &= \sum_{i=1}^n x_{i,1} y_i \\ \vdots \\ \beta_0 \sum_{i=1}^n x_{i,p} + \beta_1 \sum_{i=1}^n x_{i,p} x_{i,1} + \dots + \beta_p \sum_{i=1}^n x_{i,p} x_{i,p} &= \sum_{i=1}^n x_{i,p} y_i \end{cases}$$

can be rewritten in matrix terms as:

$$\begin{cases} \beta_{0}\dot{\mathbf{x}}_{.0}^{T}\dot{\mathbf{x}}_{.0} + \beta_{1}\dot{\mathbf{x}}_{.0}^{T}\dot{\mathbf{x}}_{.1} + \dots + \beta_{p}\dot{\mathbf{x}}_{.0}^{T}\dot{\mathbf{x}}_{.p} &= \dot{\mathbf{x}}_{.0}^{T}\mathbf{y} \\ \beta_{0}\dot{\mathbf{x}}_{.1}^{T}\dot{\mathbf{x}}_{.0} + \beta_{1}\dot{\mathbf{x}}_{.1}^{T}\dot{\mathbf{x}}_{.1} + \dots + \beta_{p}\dot{\mathbf{x}}_{.1}^{T}\dot{\mathbf{x}}_{.p} &= \dot{\mathbf{x}}_{.1}^{T}\mathbf{y} \\ \vdots \\ \beta_{0}\dot{\mathbf{x}}_{.p}^{T}\dot{\mathbf{x}}_{.0} + \beta_{1}\dot{\mathbf{x}}_{.p}^{T}\dot{\mathbf{x}}_{.1} + \dots + \beta_{p}\dot{\mathbf{x}}_{.p}^{T}\dot{\mathbf{x}}_{.p} &= \dot{\mathbf{x}}_{.p}^{T}\mathbf{y} \end{cases}$$

This can be restated as:

$$\begin{pmatrix} (\dot{\mathbf{x}}_{.0}^T \dot{\mathbf{X}}) \boldsymbol{\beta} &= \dot{\mathbf{x}}_{.0}^T \mathbf{y} \\ (\dot{\mathbf{x}}_{.1}^T \dot{\mathbf{X}}) \boldsymbol{\beta} &= \dot{\mathbf{x}}_{.1}^T \mathbf{y} \\ \vdots \\ (\dot{\mathbf{x}}_{.p}^T \dot{\mathbf{X}}) \boldsymbol{\beta} &= \dot{\mathbf{x}}_{.p}^T \mathbf{y}$$

which in turn is equivalent to:

$$(\dot{\mathbf{X}}^T\mathbf{X}) \boldsymbol{\beta} = \dot{\mathbf{X}}^T\mathbf{y}.$$

Such a system of linear equations in matrix form can be solved numerically using, amongst others, the solve() function.

Remark. (***) In practice, we'd rather rely on QR or SVD decompositions of matrices for efficiency and numerical accuracy reasons.

```
Numeric example - solution via lm():
```

```
X1 <- as.numeric(Credit$Balance[Credit$Balance>0])
X2 <- as.numeric(Credit$Income[Credit$Balance>0])
Y <- as.numeric(Credit$Rating[Credit$Balance>0])
lm(Y~X1+X2)$coefficients
```

(Intercept) X1 X2 ## 172.5587 0.1828 2.1976

Recalling that $\mathbf{A}^T \mathbf{B}$ can be computed by calling t(A) %*% B or – even faster – by calling crossprod(A, B), we can also use solve() to obtain the same result:

```
X_dot <- cbind(1, X1, X2)
solve( crossprod(X_dot, X_dot), crossprod(X_dot, Y) )</pre>
```

```
## [,1]
## 172.5587
## X1 0.1828
## X2 2.1976
```

2.5.5 Pearson's r in Matrix Form (**)

Recall the Pearson linear correlation coefficient:

$$r(\mathbf{x}, \mathbf{y}) = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) (y_i - \bar{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2}}$$

Denote with x° and y° the centred versions of x and y, respectively, i.e., $x_i^{\circ} = x_i - \bar{x}$ and $y_i^{\circ} = y_i - \bar{y}$.

Rewriting the above yields:

$$r(\mathbf{x}, \mathbf{y}) = \frac{\sum_{i=1}^{n} x_{i}^{\circ} y_{i}^{\circ}}{\sqrt{\sum_{i=1}^{n} (x_{i}^{\circ})^{2}} \sqrt{\sum_{i=1}^{n} (y_{i}^{\circ})^{2}}}$$

which is exactly:

$$r(\boldsymbol{x},\boldsymbol{y}) = \frac{\boldsymbol{x}^{\circ} \cdot \boldsymbol{y}^{\circ}}{\|\boldsymbol{x}^{\circ}\| \|\boldsymbol{y}^{\circ}\|}$$

i.e., the normalised dot product of the centred versions of the two vectors.

This is the cosine of the angle between the two vectors (in *n*-dimensional spaces)!

(**) Recalling from the previous chapter that $\mathbf{A}^T \mathbf{A}$ gives the dot product between all the pairs of columns in a matrix \mathbf{A} , we can implement an equivalent version of cor(C) as follows:

```
C <- Credit[Credit$Balance>0,
   c("Rating", "Limit", "Income", "Age",
    "Education", "Balance")]
C_centred <- apply(C, 2, function(c) c-mean(c))</pre>
C normalised <- apply(C centred, 2, function(c)</pre>
    c/sqrt(sum(c^2)))
round(t(C_normalised) %*% C_normalised, 3)
##
            Rating Limit Income Age Education Balance
             1.000 0.996 0.831 0.167
## Rating
                                          -0.040
                                                   0.798
## Limit
             0.996 1.000 0.834 0.164
                                          -0.032
                                                   0.796
## Income
             0.831 0.834 1.000 0.227
                                          -0.033 0.414
## Age
             0.167 0.164 0.227 1.000
                                          0.024
                                                   0.008
## Education -0.040 -0.032 -0.033 0.024
                                          1.000 0.001
```

0.798 0.796 0.414 0.008

2.5.6 Further Reading

Balance

Recommended further reading: (James et al. 2017: Chapters 1, 2 and 3) Other: (Hastie et al. 2017: Chapter 1, Sections 3.2 and 3.3)

0.001

1.000

Classification with K-Nearest Neighbours

These lecture notes are distributed in the hope that they will be useful. Any bug reports are appreciated.

3.1 Introduction

3

3.1.1 Classification Task

Let $\mathbf{X} \in \mathbb{R}^{n \times p}$ be an input matrix that consists of *n* points in a *p*-dimensional space (each of the *n* objects is described by means of *p* numerical features).

Recall that in supervised learning, with each \mathbf{x}_{i} , we associate the desired output y_i .

$$\mathbf{X} = \begin{bmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,p} \\ x_{2,1} & x_{2,2} & \cdots & x_{2,p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n,1} & x_{n,2} & \cdots & x_{n,p} \end{bmatrix} \qquad \mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}.$$

In this chapter we are interested in **classification** tasks; we assume that each y_i is a *label* (e.g., a character string) – it is of quantitative/categorical type.

Most commonly, we are faced with **binary classification** tasks where there are only two possible distinct labels.

We traditionally denote them with 0s and 1s.

For example:

81

0	1
no	yes
false	true
failure	success
healthy	ill

On the other hand, in **multiclass classification**, we assume that each y_i takes more than two possible values.

Example plot of a synthetic dataset with the reference binary ys is given in Figure 3.1. The "true" decision boundary is at $X_1 = 0$ but the classes slightly overlap (the dataset is a bit noisy).

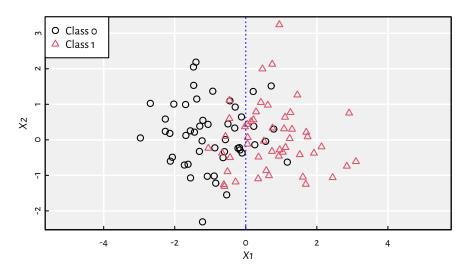


Figure 3.1: A synthetic 2D dataset with the true decision boundary at $X_1 = 0$

3.1.2 Data

For illustration, let's consider the Wine Quality dataset (Cortez et al. 2009) that can be downloaded from the UCI Machine Learning Repository (https://archive.ics.uci. edu/ml/datasets/Wine+Quality) – white wines only.

[1] 4898

These are Vinho Verde wine samples from the north of Portugal, see https://www.vi nhoverde.pt/en/homepage.

There are 11 physicochemical features reported. Moreover, there is a wine rating (which we won't consider here) on the scale 0 (bad) to 10 (excellent) given by wine experts.

The input matrix $\mathbf{X} \in \mathbb{R}^{n \times p}$ consists of the first 10 numeric variables:

```
X <- as.matrix(wines[,1:10])</pre>
dim(X)
## [1] 4898
              10
head(X, 2) # first two rows
        fixed.acidity volatile.acidity citric.acid residual.sugar
##
                  7.0
                                   0.27
                                               0.36
                                                               20.7
## 1600
                  6.3
                                   0.30
                                               0.34
## 1601
                                                                1.6
##
        chlorides free.sulfur.dioxide total.sulfur.dioxide density pH
## 1600
            0.045
                                    45
                                                         170
                                                               1.001 3.0
            0.049
                                                               0.994 3.3
## 1601
                                    14
                                                         132
       sulphates
##
## 1600
             0.45
## 1601
             0.49
```

The 11th variable measures the amount of alcohol (in %).

We will convert this dependent variable to a binary one:

```
O == (alcohol < 12) == lower-alcohol wines1</li>
I == (alcohol >= 12) == higher-alcohol wines
# recall that TRUE == 1
Y <- factor(as.character(as.numeric(wines$alcohol >= 12)))
table(Y)
```

```
## Y
## 0 1
## 4085 813
```

Now (\mathbf{X}, \mathbf{y}) is a basis for an interesting (yet challenging) binary classification task.

3.1.3 Training and Test Sets

Recall that we are genuinely interested in the construction of supervised learning models for the two following purposes:

- description to explain a given dataset in simpler terms,
- **prediction** to forecast the values of the dependent variable for inputs that are yet to be observed.

In the latter case:

- we don't want our models to overfit to current data,
- we want our models to generalise well to new data.

One way to assess if a model has sufficient predictive power is based on a random **train-test split** of the original dataset:

- training sample (usually 60-80% of the observations) used to construct a model,
- test sample (remaining 40-20%) used to assess the goodness of fit.

Remark. Test sample must not be used in the training phase! (No cheating!)

```
60/40% train-test split in R:
```

```
set.seed(123) # reproducibility matters
random_indices <- sample(n)
head(random_indices) # preview</pre>
```

```
## [1] 2463 2511 2227 526 4291 2986
```

```
# first 60% of the indices (they are arranged randomly)
# will constitute the train sample:
train_indices <- random_indices[1:floor(n*0.6)]
X_train <- X[train_indices,]
Y_train <- Y[train_indices]
# the remaining indices (40%) go to the test sample:
X_test <- X[-train_indices,]
Y_test <- Y[-train_indices]</pre>
```

3.1.4 Discussed Methods

Our aim is to build a classifier that takes 10 wine physicochemical features and determines whether it's a "strong" wine.

We will discuss 3 simple and educational (yet practically useful) classification algorithms:

- K-nearest neighbour scheme this chapter,
- Decision trees the next chapter,
- *Logistic regression* the next chapter.

3.2 K-nearest Neighbour Classifier

3.2.1 Introduction

Rule. "If you don't know what to do in a situation, just act like the people around you"

For some integer $K \ge 1$, the **K-Nearest Neighbour (K-NN) Classifier** proceeds as follows.

To classify a new point \mathbf{x}' :

- 1. find the *K* nearest neighbours of a given point \mathbf{x}' amongst the points in the train set, denoted $\mathbf{x}_{i_1, \cdots}, \mathbf{x}_{i_{K'}}$:
 - a. compute the Euclidean distances between \mathbf{x}' and each $\mathbf{x}_{i,\cdot}$ from the train set,

$$d_i = \|\mathbf{x}' - \mathbf{x}_{i,\cdot}\|$$

- b. order d_i s in increasing order, $d_{i_1} \le d_{i_2} \le \dots \le d_{i_K}$
- c. pick first *K* indices (these are the *nearest* neighbours)
- 2. fetch the corresponding reference labels y_{i_1}, \dots, y_{i_K}
- 3. return their *mode* as a result, i.e., the most frequently occurring label (a.k.a. *majority vote*)

Here is how K-NN classifier works on a synthetic 2D dataset. Firstly let's consider K = 1, see Figure 3.2. Gray and pink regions depict how new points would be classified. In particular 1-NN is "greedy" in the sense that we just locate the nearest point.

Remark. (*) 1-NN classification is essentially based on a dataset's so-called Voronoi diagram.

Increasing K somehow smoothens the decision boundary (this makes it less "local" and more "global"). Figure 3.3 depicts the K = 3 case.

Recall that the "true" decision boundary for this synthetic dataset is at $X_1 = 0$. The 25-NN classifier did quite a good job, see Figure 3.4.

3.2.2 Example in R

We shall be calling the knn() function from package FNN to classify the points from the test sample extracted from the wines dataset:

```
library("FNN")
```

Let's make prediction using the 5-nn classifier:

```
Y_knn5 <- knn(X_train, X_test, Y_train, k=5)
head(Y_test, 28) # True Ys</pre>
```

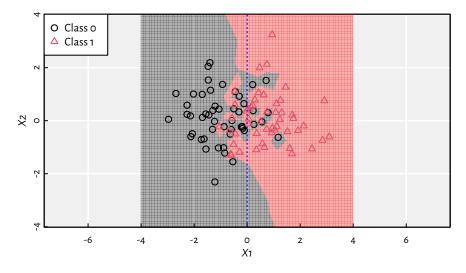


Figure 3.2: 1-NN class bounds for our 2D synthetic dataset

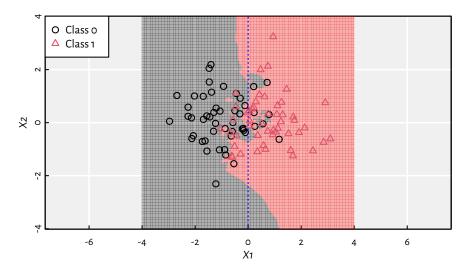


Figure 3.3: 3-NN class bounds for our 2D synthetic dataset

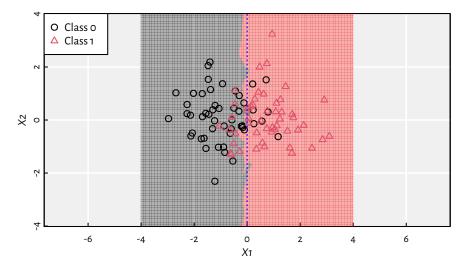


Figure 3.4: 25-NN class bounds for our 2D synthetic dataset

Levels: 0 1 head(Y_knn5, 28) # Predicted Ys ## Levels: 0 1 mean(Y_test == Y_knn5) # accuracy ## [1] 0.81735 9-nn classifier: Y_knn9 <- knn(X_train, X_test, Y_train, k=9)</pre> head(Y_test, 28) # True Ys ## Levels: 0 1 head(Y_knn9, 28) # Predicted Ys ## Levels: 0 1 mean(Y_test == Y_knn9) # accuracy ## [1] 0.81939

3.2.3 Feature Engineering

Note that the Euclidean distance that we used above implicitly assumes that every feature (independent variable) is on the same scale.

However, when dealing with, e.g., physical quantities, we often perform conversions of units of measurement (kg \Rightarrow g, feet \Rightarrow m etc.).

Transforming a single feature may drastically change the metric structure of the dataset and therefore highly affect the obtained predictions.

To "bring data to the same scale", we often apply a trick called **standardisation**.

Computing the so-called **Z-scores** of the *j*-th feature, $\mathbf{x}_{.,j}$, is done by subtracting from each observation the sample mean and dividing the result by the sample standard deviation:

$$z_{i,j} = \frac{x_{i,j} - \bar{x}_{\cdot,j}}{s_{x_{\cdot,j}}}$$

This a new feature $\mathbf{z}_{.,i}$ that always has mean 0 and standard deviation of 1.

Moreover, it is *unit-less* (e.g., we divide a value in kgs by a value in kgs, the units are cancelled out). This, amongst others, prevents one of the features from dominating the other ones.

Z-scores are easy to interpret, e.g., 0.5 denotes an observation that is 0.5 standard deviations above the mean and -3 informs us that a value is 3 standard deviations below the mean.

Remark. (*) If data are normally distributed (bell-shaped histogram), with very high probability, most (expected value is 99.74%) observations should have Z-scores between -3 and 3. Those that don't, are "suspicious", maybe they are outliers? We should inspect them manually.

Let's compute $Z_{\rm train}$ and $Z_{\rm test},$ being the standardised versions of $X_{\rm train}$ and $X_{\rm test},$ respectively.

```
means <- apply(X_train, 2, mean) # column means
sds <- apply(X_train, 2, sd) # column standard deviations
Z_train <- X_train # copy
Z_test <- X_test # copy
for (j in 1:ncol(X)) {
    Z_train[,j] <- (Z_train[,j]-means[j])/sds[j]
    Z_test[,j] <- (Z_test[,j] -means[j])/sds[j]
}
```

Note that we have transformed the training and test sample in the very same way. Computing means and standard deviations separately for these two datasets is a common error – it is the training set that we use in the course of the learning process. The above can be re-written as:

```
Z_train <- t(apply(X_train, 1, function(r) (r-means)/sds))
Z_test <- t(apply(X_test, 1, function(r) (r-means)/sds))</pre>
```

See Figure 3.5 for an illustration. Note that the righthand figures (histograms of standardised variables) are on the same scale now.

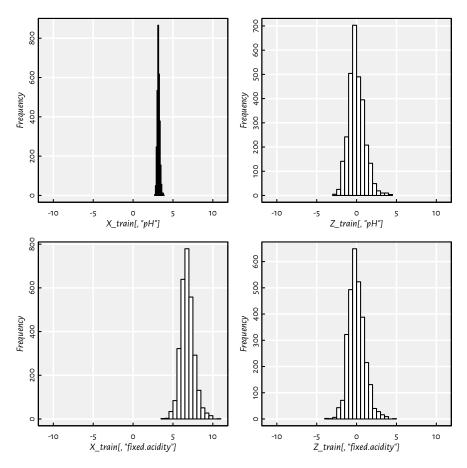


Figure 3.5: Empirical distribution of two variables (pH on the top, fixed.acidity on the bottom) before (left) and after (right) standardising

Remark. Of course, standardisation is only about shifting and scaling, it preserves the shape of the distribution. If the original variable is right skewed or bimodal, its standardised version will remain as such.

Let's compute the accuracy of K-NN classifiers acting on standardised data.

```
Y_knn5s <- knn(Z_train, Z_test, Y_train, k=5)
mean(Y_test == Y_knn5s) # accuracy
## [1] 0.91429</pre>
```

```
Y_knn9s <- knn(Z_train, Z_test, Y_train, k=9)
mean(Y_test == Y_knn9s) # accuracy
```

[1] 0.91378

The accuracy is much better.

Standardisation is an example of *feature engineering*.

Good models rarely work well "straight out of the box" – if that was the case, we wouldn't need data scientists and machine learning engineers!

To increase models' accuracy, we often spend a lot of time:

- cleansing data (e.g., removing outliers)
- extracting new features
- transforming existing features
- trying to find a set of features that are relevant

This is the "more art than science" part of data science (sic!), and hence most textbooks are not really eager for discussing such topics (including this one).

Sorry, this is sad but true. The solutions that work well in the case of dataset A may fail in the B case and vice versa. However, the more exercises you solve, the greater the arsenal of ideas/possible approaches you will have at hand when dealing with real-world problems.

Feature selection – example (manually selected columns):

```
features <- c("density", "residual.sugar")
Y_knn5s <- knn(Z_train[,features], Z_test[,features],
    Y_train, k=5)
mean(Y_test == Y_knn5s) # accuracy
## [1] 0.91633
Y_knn9s <- knn(Z_train[,features], Z_test[,features],
    Y_train, k=9)
mean(Y_test == Y_knn9s) # accuracy</pre>
```

[1] 0.925

Exercise 3.1 Try to find a combination of 2-4 features (by guessing or applying magic tricks) that increases the accuracy of a K-NN classifier on this dataset.

90

3.3 Model Assessment and Selection

3.3.1 Performance Metrics

Recall that y_i denotes the true label associated with the *i*-th observation.

Let \hat{y}_i denote the classifier's output for a given $\mathbf{x}_{i,.}$.

Ideally, we'd wish that $\hat{y}_i = y_i$.

Sadly, in practice we will make errors.

Here are the 4 possible situations (true vs. predicted label):

	$y_i = 0$	$y_i = 1$
$\hat{y}_i = 0$	True Negative	False Negative
$\hat{y}_i = 1$	False Positive (Type I error)	(Type II error) True Positive

Note that the terms **positive** and **negative** refer to the classifier's output, i.e., occur when \hat{y}_i is equal to 1 and 0, respectively.

A **confusion matrix** is used to summarise the correctness of predictions for the whole sample:

```
Y_pred <- knn(Z_train, Z_test, Y_train, k=9)</pre>
(C <- table(Y_pred, Y_test))</pre>
##
         Y test
## Y_pred
              0
                   1
##
        0 1607 133
##
        1
            36 184
For example,
C[1,1] # number of TNs
## [1] 1607
C[2,1] # number of FPs
## [1] 36
```

Accuracy is the ratio of the correctly classified instances to all the instances.

In other words, it is the probability of making a correct prediction.

Accuracy =
$$\frac{\text{TP} + \text{TN}}{\text{TP} + \text{TN} + \text{FP} + \text{FN}} = \frac{1}{n} \sum_{i=1}^{n} \mathbb{I}(y_i = \hat{y}_i)$$

where \mathbb{I} is the indicator function, $\mathbb{I}(l) = 1$ if logical condition *l* is true and 0 otherwise.

```
mean(Y_test == Y_pred) # accuracy
```

[1] 0.91378
(C[1,1]+C[2,2])/sum(C) # equivalently

```
## [1] 0.91378
```

In many applications we are dealing with **unbalanced problems**, where the case $y_i = 1$ is relatively rare, yet predicting it correctly is much more important than being accurate with respect to class 0.

Remark. Think of medical applications, e.g., HIV testing or tumour diagnosis.

In such a case, accuracy as a metric fails to quantify what we are aiming for.

Remark. If only 1% of the cases have true $y_i = 1$, then a dummy classifier that always outputs $\hat{y}_i = 0$ has 99% accuracy.

Metrics such as precision and recall (and their aggregated version, F-measure) aim to address this problem.

Precision

$$Precision = \frac{TP}{TP + FP}$$

If the classifier outputs 1, what is the probability that this is indeed true?

C[2,2]/(C[2,2]+C[2,1]) # Precision

[1] 0.83636

Recall (a.k.a. sensitivity, hit rate or true positive rate)

$$Recall = \frac{TP}{TP + FN}$$

If the true class is 1, what is the probability that the classifier will detect it? C[2,2]/(C[2,2]+C[1,2]) # Recall

[1] 0.58044

Remark. Precision or recall? It depends on an application. Think of medical diagnosis, medical screening, plagiarism detection, etc. — which measure is more important in each of the settings listed?

As a compromise, we can use the **F-measure** (a.k.a. F_1 -measure), which is the harmonic mean of precision and recall:

$$F = \frac{1}{\frac{1}{\frac{1}{Precision} + \frac{1}{Recall}}} = \left(\frac{1}{2}\left(Precision^{-1} + Recall^{-1}\right)\right)^{-1} = \frac{TP}{TP + \frac{FP + FN}{2}}$$

Exercise 3.2 Show that the above equality holds.

```
C[2,2]/(C[2,2]+0.5*C[1,2]+0.5*C[2,1]) # F
```

```
## [1] 0.68529
```

The following function can come in handy in the future:

F FN Acc Prec Rec ΤN ## 0.91378 0.83636 0.58044 0.68529 1607.00000 133.00000 FP TP ## ## 36.00000 184.00000

3.3.2 How to Choose K for K-NN Classification?

We haven't yet considered the question which K yields the best classifier.

Best == one that has the highest *predictive power*.

Best == with respect to some chosen metric (accuracy, recall, precision, F-measure, ...)

Let's study how the metrics on the test set change as functions of the number of nearest neighbours considered, *K*.

Auxiliary function:

```
knn_metrics <- function(k, X_train, X_test, Y_train, Y_test)
{
    Y_pred <- knn(X_train, X_test, Y_train, k=k) # classify
    get_metrics(Y_pred, Y_test)
}</pre>
```

For example:

```
knn_metrics(5, Z_train, Z_test, Y_train, Y_test)
```

Acc Prec Rec F ΤN FN ## 0.91429 0.82251 0.59937 0.69343 1602.00000 127.00000 FP ## TP ## 41,00000 190,00000

Example call to evaluate metrics as a function of different Ks:

Remark. Note that sapply(X, f, arg1, arg2, ...) outputs a list Y such that Y[[i]] = f(X[i], arg1, arg2, ...) which is then simplified to a matrix.

Remark. We transpose this result, t(), in order to get each metric corresponding to different columns in the result. As usual, if you keep wondering, e.g., why t(), play with the code yourself – it's fun fun fun.

Example results:

round(cbind(K=Ks, Ps), 2)

FN FP TP K Acc Prec Rec F ΤN ## 1 0.92 0.77 0.72 0.74 1574 90 69 227 ## 1 ## 2 3 0.92 0.79 0.66 0.72 1587 108 56 209 ## 3 5 0.91 0.82 0.60 0.69 1602 127 41 190 7 0.91 0.82 0.56 0.67 1604 138 39 179 ## 4 ## 5 9 0.91 0.84 0.58 0.69 1607 133 36 184 ## 6 11 0.91 0.85 0.56 0.68 1611 138 32 179 ## 7 13 0.91 0.83 0.57 0.68 1606 136 37 181 ## 8 15 0.91 0.83 0.55 0.66 1607 144 36 173 ## 9 17 0.91 0.82 0.53 0.64 1607 149 36 168

10 19 0.90 0.81 0.52 0.63 1603 151 40 166

Figure 3.6 is worth a thousand tables though (see ?matplot in R). The reader is kindly asked to draw conclusions themself.

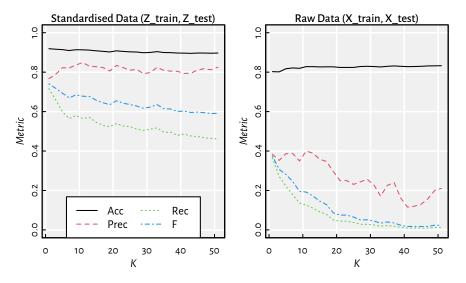


Figure 3.6: Performance of *K*-nn classifiers as a function of *K* for standardised and raw data

3.3.3 Training, Validation and Test sets

In the K-NN classification task, there are many hyperparameters to tune up:

- Which *K* should we choose?
- Should we standardise the dataset?
- Which variables should be taken into account when computing the Euclidean distance?
- **Remark. If we select the best hyperparameter set based on test sample error, we will run into the trap of overfitting again**. This time we'll be overfitting to the test set the model that is optimal for a given test sample doesn't have to generalise well to other test samples (!).

In order to overcome this problem, we can perform a random **train-validation-test split** of the original dataset:

- training sample (e.g., 60%) used to construct the models
- validation sample (e.g., 20%) used to tune the hyperparameters of the classifier
- test sample (e.g., 20%) used to assess the goodness of fit

An example way to perform a 60/20/20% train-validation-test split:

Exercise 3.3 Find the best K on the validation set and compute the error metrics on the test set.

Remark. (*) If our dataset is too small, we can use various *cross-validation* techniques instead of a train-validate-test split.

3.4 Implementing a K-NN Classifier (*)

3.4.1 Factor Data Type

Recall that (see Appendix B for more details) factor type in R is a very convenient means to encode categorical data (such as y):

```
x <- c("yes", "no", "no", "yes", "no")
f <- factor(x, levels=c("no", "yes"))
f
## [1] yes no no yes no
## Levels: no yes
table(f) # counts
## f
## no yes
## 3 2</pre>
```

Internally, objects of type factor are represented as integer vectors with elements in $\{1, ..., M\}$, where *M* is the number of possible levels.

Labels, used to "decipher" the numeric codes, are stored separately.

```
as.numeric(f) # 2nd label, 1st label, 1st label etc.
## [1] 2 1 1 2 1
levels(f)
## [1] "no" "yes"
levels(f) <- c("failure", "success") # re-encode
f</pre>
```

```
## [1] success failure failure success failure
## Levels: failure success
```

3.4.2 Main Routine (*)

Let's implement a K-NN classifier ourselves by using a top-bottom approach.

We will start with a general description of the admissible inputs and the expected output.

Then we will arrange the processing of data into conveniently manageable chunks.

The function's declaration will look like:

```
our_knn <- function(X_train, X_test, Y_train, k=1) {
    # k=1 denotes a parameter with a default value
    # ...
}</pre>
```

Load an example dataset on which we will test our algorithm:

Note that Y is now a factor object.

```
Train-test split:
```

```
set.seed(123)
random_indices <- sample(n)
train_indices <- random_indices[1:floor(n*0.6)]
X_train <- X[train_indices,]
Y_train <- Y[train_indices]
X_test <- X[-train_indices,]
Y_test <- Y[-train_indices]</pre>
```

First, we should specify the type and form of the arguments we're expecting:

```
# this is the body of our_knn() - part 1
stopifnot(is.numeric(X_train), is.matrix(X_train))
stopifnot(is.numeric(X_test), is.matrix(X_test))
stopifnot(is.factor(Y_train))
stopifnot(ncol(X_train) == ncol(X_test))
stopifnot(nrow(X_train) == length(Y_train))
stopifnot(k >= 1)
n_train <- nrow(X_train)
n_test <- nrow(X_test)
p <- ncol(X_train)
M <- length(levels(Y_train))</pre>
```

Therefore,

 $X_{\text{train}} \in \mathbb{R}^{n_{\text{train}} \times p}, X_{\text{test}} \in \mathbb{R}^{n_{\text{test}} \times p} \text{ and } Y_{\text{train}} \in \{1, \dots, M\}^{n_{\text{train}}}$

Remark. Recall that R factor objects are internally encoded as integer vectors.

Next, we will call the (to-be-done) function our_get_knnx(), which seeks nearest neighbours of all the points:

```
# our_get_knnx returns a matrix nn_indices of size n_test*k,
# where nn_indices[i,j] denotes the index of
# X_test[i,]'s j-th nearest neighbour in X_train.
# (It is the point X_train[nn_indices[i,j],]).
nn_indices <- our_get_knnx(X_train, X_test, k)</pre>
```

Then, for each point in X_test, we fetch the labels corresponding to its nearest neighbours and compute their mode:

```
Y_pred <- numeric(n_test) # vector of length n_test
# For now we will operate on the integer labels in {1,...,M}
Y_train_int <- as.numeric(Y_train)
for (i in 1:n_test) {
    # Get the labels of the NNs of the i-th point:
    nn_labels_i <- Y_train_int[nn_indices[i,]]
    # Compute the mode (majority vote):
    Y_pred[i] <- our_mode(nn_labels_i) # in {1,...,M}
}
```

Finally, we should convert the resulting integer vector to an object of type factor:

```
# Convert Y_pred to factor:
return(factor(Y_pred, labels=levels(Y_train)))
```

3.4.3 Mode

To implement the mode, we can use the tabulate() function.

Exercise 3.4 Read the function's man page, see ?tabulate.

For example:

tabulate(c(1, 2, 1, 1, 1, 5, 2))

[1] 4 2 0 0 1

There might be multiple modes – in such a case, we should pick one at random.

For that, we can use the sample() function.

Exercise 3.5 Read the function's man page, see ?sample. Note that its behaviour is different when it's first argument is a vector of length 1.

An example implementation:

```
our mode <- function(Y) {</pre>
    # tabulate() will take care of
    # checking the correctness of Y
    t <- tabulate(Y)</pre>
    mode_candidates <- which(t == max(t))</pre>
    if (length(mode candidates) == 1) return(mode candidates)
    else return(sample(mode candidates, 1))
}
our_mode(c(1, 1, 1, 1))
## [1] 1
our_mode(c(2, 2, 2, 2))
## [1] 2
our_mode(c(3, 1, 3, 3))
## [1] 3
our_mode(c(1, 1, 3, 3, 2))
## [1] 3
our_mode(c(1, 1, 3, 3, 2))
## [1] 1
```

3.4.4 NN Search Routines (*)

Last but not least, we should implement the our_get_knnx() function.

It is the function responsible for seeking the indices of nearest neighbours.

It turns out this function will actually constitute the K-NN classifier's performance bottleneck in case of big data samples.

A naive approach to our_get_knnx() relies on computing all pairwise distances, and sorting them.

```
our_get_knnx <- function(X_train, X_test, k) {</pre>
    n_test <- nrow(X_test)</pre>
    nn_indices <- matrix(NA_real_, nrow=n_test, ncol=k)</pre>
    for (i in 1:n test) {
        d <- apply(X_train, 1, function(x)</pre>
             sqrt(sum((x-X test[i,])^2)))
        # now d[j] is the distance
        # between X train[j,] and X test[i,]
        nn indices[i,] <- order(d)[1:k]</pre>
    }
    nn_indices
}
A comparison with FNN:knn():
system.time(Ya <- knn(X_train, X_test, Y_train, k=5))</pre>
##
      user system elapsed
##
     0.128
              0.000
                       0.128
system.time(Yb <- our_knn(X_train, X_test, Y_train, k=5))</pre>
##
      user system elapsed
##
    15.683
              0.000 15.683
mean(Ya == Yb) # 1.0 on perfect match
```

[1] 1

Both functions return identical results but our implementation is "slightly" slower.

FNN:knn() is efficiently written in C++, which is a compiled programming language.

R, on the other hand (just like Python and Matlab) is interpreted, therefore as a rule of thumb we should consider it an order of magnitude slower (see, however, the Julia language).

Let's substitute our naive implementation with the equivalent one, but written in C++ (available in the FNN package).

Remark. (*) Note that we can write a C++ implementation ourselves, see the Rcpp package for seamless R and C++ integration.

```
our get_knnx <- function(X_train, X_test, k) {</pre>
    # this is used by our knn()
    FNN::get.knnx(X_train, X_test, k, algorithm="brute")$nn.index
}
system.time(Ya <- knn(X_train, X_test, Y_train, k=5))</pre>
##
      user system elapsed
##
     0.124
             0.000
                      0.124
system.time(Yb <- our_knn(X_train, X_test, Y_train, k=5))</pre>
##
      user system elapsed
     0.044 0.000
                      0.045
##
mean(Ya == Yb) # 1.0 on perfect match
```

[1] 1

Note that our solution requires $c \cdot n_{\text{test}} \cdot n_{\text{train}} \cdot p$ arithmetic operations for some c > 1. The overall cost of sorting is at least $d \cdot n_{\text{test}} \cdot n_{\text{train}} \cdot \log n_{\text{train}}$ for some d > 1.

This does not scale well with both n_{test} and n_{train} (think – big data).

It turns out that there are special **spatial data structures** – such as *metric trees* – that aim to speed up searching for nearest neighbours in *low-dimensional spaces* (for small *p*).

Remark. (*) Searching in high-dimensional spaces is hard due to the so-called curse of dimensionality.

For example, FNN::get.knnx() also implements the so-called kd-trees.

```
library("microbenchmark")
test_speed <- function(n, p, k) {
    A <- matrix(runif(n*p), nrow=n, ncol=p)
    s <- summary(microbenchmark::microbenchmark(
        brute=FNN::get.knnx(A, A, k, algorithm="brute"),
        kd_tree=FNN::get.knnx(A, A, k, algorithm="kd_tree"),
        times=3
    ), unit="s")
    # minima of 3 time measurements:
    structure(s$min, names=as.character(s$expr))
}
test_speed(10000, 2, 5)
## brute kd_tree</pre>
```

0.257222 0.011391
test_speed(10000, 5, 5)
brute kd_tree
0.39690 0.05729
test_speed(10000, 10, 5)
brute kd_tree
0.62622 0.59807
test_speed(10000, 20, 5)
brute kd_tree
1.1224 4.8675

3.4.5 Different Metrics (*)

The Euclidean distance is just one particular example of many possible **metrics** (metric == a mathematical term, above we have used this term in a more relaxed fashion, when referring to accuracy etc.).

Mathematically, we say that *d* is a metric on a set *X* (e.g., \mathbb{R}^p), whenever it is a function $d : X \times X \to [0, \infty]$ such that for all $x, x', x'' \in X$:

- d(x, x') = 0 if and only if x = x',
- d(x, x') = d(x', x) (it is symmetric)
- $d(x, x'') \le d(x, x') + d(x', x'')$ (it fulfils the triangle inequality)

Remark. (*) Not all the properties are required in all the applications; sometimes we might need a few additional ones.

We can easily generalise the way we introduced the K-NN method to have a classifier that is based on a point's neighbourhood with respect to any metric.

Example metrics on \mathbb{R}^p :

• Euclidean

$$d_2(\mathbf{x}, \mathbf{x}') = \|\mathbf{x} - \mathbf{x}'\| = \|\mathbf{x} - \mathbf{x}'\|_2 = \sqrt{\sum_{i=1}^p (x_i - x'_i)^2}$$

• Manhattan (taxicab)

$$d_1(\mathbf{x}, \mathbf{x}') = \|\mathbf{x} - \mathbf{x}'\|_1 = \sum_{i=1}^p |x_i - x_i'|$$

• Chebyshev (maximum)

$$d_{\infty}(\mathbf{x}, \mathbf{x}') = \|\mathbf{x} - \mathbf{x}'\|_{\infty} = \max_{i=1,\dots,p} |x_i - x'_i|$$

102

We can define metrics on different spaces too.

For example, the **Levenshtein distance** is a popular choice for comparing character strings (also DNA sequences etc.)

It is an *edit distance* – it measures the minimal number of single-character insertions, deletions or substitutions to change one string into another.

```
For instance:
```

```
adist("happy", "nap")
```

[,1] ## [1,] 3

This is because we need 1 substitution and 2 deletions,

happy \rightarrow nappy \rightarrow napp \rightarrow nap.

See also:

- the Hamming distance for categorical vectors (or strings of equal lengths),
- the Jaccard distance for sets,
- the Kendall tau rank distance for rankings.

Moreover, R package stringdist includes implementations of numerous string metrics.

3.5 Outro

3.5.1 Remarks

Note that K-NN is suitable for any kind of multiclass classification.

However, in practice it's pretty slow for larger datasets – to classify a single point we have to query the whole training set (which should be available at all times).

In the next part we will discuss some other well-known classifiers:

- Decision trees
- Logistic regression

3.5.2 Side Note: K-NN Regression

The K-Nearest Neighbour scheme is intuitively pleasing.

No wonder it has inspired a similar approach for solving a regression task.

In order to make a prediction for a new point \mathbf{x}' :

- 1. find the K-nearest neighbours of \mathbf{x}' amongst the points in the train set, denoted $\mathbf{x}_{i_1, \cdots}, \mathbf{x}_{i_{K'}}$,
- 2. fetch the corresponding reference outputs y_{i_1}, \ldots, y_{i_K} ,
- 3. return their arithmetic mean as a result,

$$\hat{y} = \frac{1}{K} \sum_{j=1}^{K} y_{i_j}.$$

Recall our modelling of the Credit Rating (Y) as a function of the average Credit Card Balance (X) based on the ISLR::Credit dataset.

```
library("ISLR") # Credit dataset
Xc <- as.matrix(as.numeric(Credit$Balance[Credit$Balance>0]))
Yc <- as.matrix(as.numeric(Credit$Rating[Credit$Balance>0]))
library("FNN") # knn.reg function
x <- as.matrix(seq(min(Xc), max(Xc), length.out=101))
y1 <- knn.reg(Xc, x, Yc, k=1)$pred
y5 <- knn.reg(Xc, x, Yc, k=5)$pred</pre>
```

The three models are depicted in Figure 3.7. Again, the higher the *K*, the smoother the curve. On the other hand, for small *K* we adapt better to what's in a point's neighbourhood.

y25 <- knn.reg(Xc, x, Yc, k=25)\$pred

3.5.3 Further Reading

Recommended further reading: (Hastie et al. 2017: Section 13.3)

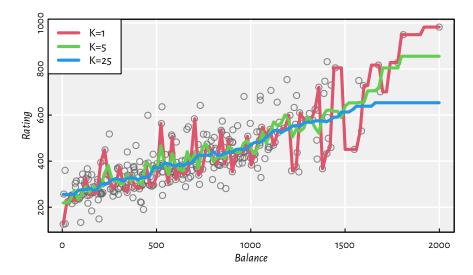


Figure 3.7: K-NN regression example

Classification with Trees and Linear Models

These lecture notes are distributed in the hope that they will be useful. Any bug reports are appreciated.

4.1 Introduction

4.1.1 Classification Task

Let $\mathbf{X} \in \mathbb{R}^{n \times p}$ be an input matrix that consists of *n* points in a *p*-dimensional space (each of the *n* objects is described by means of *p* numerical features)

Recall that in supervised learning, with each \mathbf{x}_{i} , we associate the desired output y_i .

Hence, our dataset is [X y] – where each object is represented as a row vector $[x_{i, \cdot} y_i]$, i = 1, ..., n:

$$[\mathbf{X} \mathbf{y}] = \begin{bmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,p} & y_1 \\ x_{2,1} & x_{2,2} & \cdots & x_{2,p} & y_2 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ x_{n,1} & x_{n,2} & \cdots & x_{n,p} & y_n \end{bmatrix}$$

In this chapter we are still interested in **classification** tasks; we assume that each y_i is a descriptive label.

Let's assume that we are faced with **binary classification** tasks.

Hence, there are only two possible labels that we traditionally denote with 0s and 1s.

For example:

no yes	0	1
false true failure success healthy ill	false failure	true success

Let's recall the synthetic 2D dataset from the previous chapter (true decision boundary is at $X_1 = 0$), see Figure 4.1.

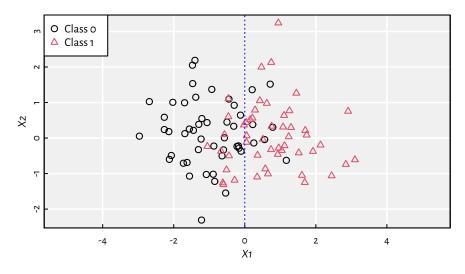


Figure 4.1: A synthetic 2D dataset with the true decision boundary at $X_1 = 0$

4.1.2 Data

For illustration, we'll be considering the Wine Quality dataset (white wines only):

[1] 4898

The input matrix $\mathbf{X} \in \mathbb{R}^{n \times p}$ consists of the first 10 numeric variables:

```
X <- as.matrix(wines[,1:10])
dim(X)
```

[1] 4898 10

head(X, 2) # first two rows

```
fixed.acidity volatile.acidity citric.acid residual.sugar
##
## 1600
                  7.0
                                  0.27
                                              0.36
                                                              20.7
                  6.3
                                              0.34
## 1601
                                  0.30
                                                               1.6
        chlorides free.sulfur.dioxide total.sulfur.dioxide density pH
##
## 1600
            0.045
                                   45
                                                        170 1.001 3.0
## 1601
            0.049
                                   14
                                                        132
                                                              0.994 3.3
       sulphates
##
## 1600
            0.45
## 1601
             0.49
```

The 11th variable measures the amount of alcohol (in %).

We will convert this dependent variable to a binary one:

```
O == (alcohol < 12) == lower-alcohol wines</li>
I == (alcohol >= 12) == higher-alcohol wines
# recall that TRUE == 1
Y <- factor(as.character(as.numeric(wines$alcohol >= 12)))
table(Y)
```

```
## Y
##
            1
      0
## 4085 813
60/40% train-test split:
set.seed(123) # reproducibility matters
random_indices <- sample(n)</pre>
head(random_indices) # preview
## [1] 2463 2511 2227 526 4291 2986
# first 60% of the indices (they are arranged randomly)
# will constitute the train sample:
train_indices <- random_indices[1:floor(n*0.6)]</pre>
X_train <- X[train_indices,]</pre>
Y_train <- Y[train_indices]</pre>
# the remaining indices (40%) go to the test sample:
X_test <- X[-train_indices,]</pre>
```

Y_test <- Y[-train_indices]

Let's also compute Z_train and Z_test, being the standardised versions of X_train and X_test, respectively.

```
means <- apply(X_train, 2, mean) # column means
sds <- apply(X_train, 2, sd) # column standard deviations</pre>
```

```
Z_train <- t(apply(X_train, 1, function(r) (r-means)/sds))
Z_test <- t(apply(X_test, 1, function(r) (r-means)/sds))
get_metrics <- function(Y_pred, Y_test)
{
    C <- table(Y_pred, Y_test) # confusion matrix
    stopifnot(dim(C) == c(2, 2))
    c(Acc=(C[1,1]+C[2,2])/sum(C), # accuracy
    Prec=C[2,2]/(C[2,2]+C[2,1]), # precision
    Rec=C[2,2]/(C[2,2]+C[1,2]), # recall
    F=C[2,2]/(C[2,2]+0.5*C[1,2]+0.5*C[2,1]), # F-measure
    # Confusion matrix items:
    TN=C[1,1], FN=C[1,2],
    FP=C[2,1], TP=C[2,2]
    ) # return a named vector
}</pre>
```

Let's go back to the K-NN algorithm.

```
library("FNN")
Y_knn5 <- knn(X_train, X_test, Y_train, k=5)
Y_knn9 <- knn(X_train, X_test, Y_train, k=9)
Y_knn5s <- knn(Z_train, Z_test, Y_train, k=5)
Y_knn9s <- knn(Z_train, Z_test, Y_train, k=9)</pre>
```

Recall the quality metrics we have obtained previously (as a point of reference):

```
cbind(
    Knn5=get_metrics(Y_knn5, Y_test),
    Knn9=get_metrics(Y_knn9, Y_test),
    Knn5s=get_metrics(Y_knn5s, Y_test),
    Knn9s=get metrics(Y knn9s, Y test)
)
##
              Knn5
                         Knn9
                                   Knn5s
                                              Knn9s
## Acc
          0.81735
                      0.81939
                                 0.91429
                                            0.91378
## Prec
          0.38674
                      0.34959
                                 0.82251
                                           0.83636
          0.22082
                                 0.59937
                                           0.58044
## Rec
                      0.13565
## F
           0.28112
                      0.19545
                                 0.69343
                                            0.68529
## TN
       1532.00000 1563.00000 1602.00000 1607.00000
## FN
         247.00000 274.00000 127.00000 133.00000
## FP
         111.00000
                    80.00000
                              41.00000
                                           36.00000
## TP
          70.00000
                    43.00000 190.00000 184.00000
```

In this chapter we discuss the following simple and educational (yet practically useful) classification algorithms:

• decision trees,

• binary logistic regression.

4.2 Decision Trees

4.2.1 Introduction

Note that a K-NN classifier discussed in the previous chapter is **model-free**. The whole training set must be stored and referred to at all times.

Therefore, it doesn't *explain* the data we have – we may use it solely for the purpose of *prediction*.

Perhaps one of the most interpretable (and hence human-friendly) models consist of decision rules of the form:

IF $x_{i,j_1} \leq v_1$ AND ... AND $x_{i,j_r} \leq v_r$ THEN $\hat{y}_i = 1$.

These can be organised into a **hierarchy** for greater readability.

This idea inspired the notion of **decision trees** (Breiman et al. 1984).

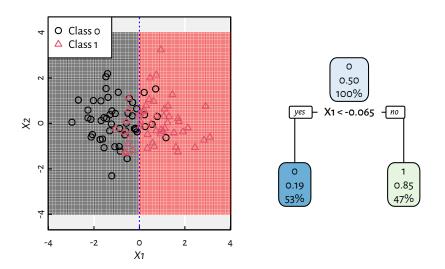


Figure 4.2: The simplest decision tree for the synthetic 2D dataset and the corresponding decision boundaries

Figure 4.2 depicts a very simple decision tree for the aforementioned synthetic dataset. There is only one decision boundary (based on X_1) that splits data into the "left" and "right" sides. Each tree node reports 3 pieces of information:

• dominating class (0 or 1)

- (relative) proportion of 1s represented in a node
- (absolute) proportion of all observations in a node

Figures 4.3 and 4.4 depict trees with more decision rules. Take a moment to contemplate how the corresponding decision boundaries changed with the introduction of new decision rules.

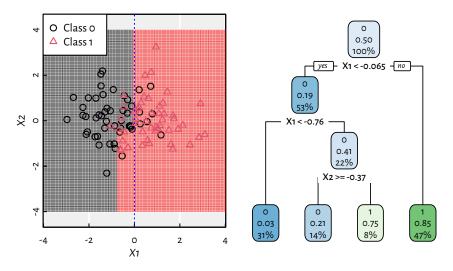


Figure 4.3: A more complicated decision tree for the synthetic 2D dataset and the corresponding decision boundaries

4.2.2 Example in R

We will use the <code>rpart()</code> function from the <code>rpart</code> package to build a classification tree.

```
library("rpart")
library("rpart.plot")
set.seed(123)
```

rpart() uses a formula (~) interface, hence it will be easier to feed it with data in a
data.frame form.

```
XY_train <- cbind(as.data.frame(X_train), Y=Y_train)
XY_test <- cbind(as.data.frame(X_test), Y=Y_test)</pre>
```

Fit and plot a decision tree, see Figure 4.5.

```
t1 <- rpart(Y~., data=XY_train, method="class")
rpart.plot(t1, tweak=1.1, fallen.leaves=FALSE, digits=3)</pre>
```

We can build less or more complex trees by playing with the cp parameter, see Figures 4.6 and 4.7.

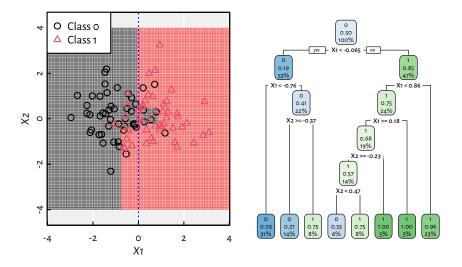


Figure 4.4: An even more complicated decision tree for the synthetic 2D dataset and the corresponding decision boundaries

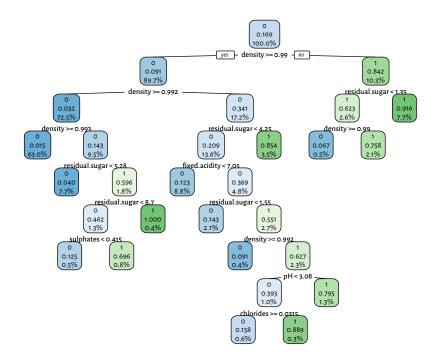


Figure 4.5: A decision tree for the wines dataset

```
# cp = complexity parameter, smaller [] more complex tree
t2 <- rpart(Y~., data=XY_train, method="class", cp=0.1)
rpart.plot(t2, tweak=1.1, fallen.leaves=FALSE, digits=3)
```

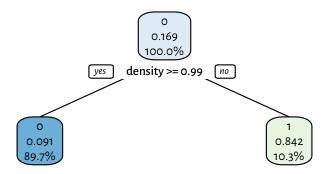


Figure 4.6: A (simpler) decision tree for the wines dataset

```
# cp = complexity parameter, smaller [] more complex tree
t3 <- rpart(Y~., data=XY_train, method="class", cp=0.00001)
rpart.plot(t3, tweak=1.1, fallen.leaves=FALSE, digits=3)
```

Trees with few decision rules actually are very nicely interpretable. On the other hand, plotting of the complex ones is just hopeless; we should treat them as "black boxes" instead.

Let's make some predictions:

FP

##

```
Y_pred <- predict(t1, XY_test, type="class")
get_metrics(Y_pred, Y_test)</pre>
```

TP

```
##
                     Ргес
                                  Rec
                                                F
                                                           ΤN
                                                                       FN
          Acc
                              0.73502
                                          0.76898 1587.00000
                                                                84.00000
##
      0.92857
                  0.80623
##
           FP
                       TP
##
     56.00000 233.00000
Y_pred <- predict(t2, XY_test, type="class")</pre>
get_metrics(Y_pred, Y_test)
##
                     Ргес
                                                           ΤN
                                                                       FN
          Acc
                                  Rec
                                                F
##
      0.90255
                  0.83871
                              0.49211
                                          0.62028 1613.00000
                                                              161.00000
```

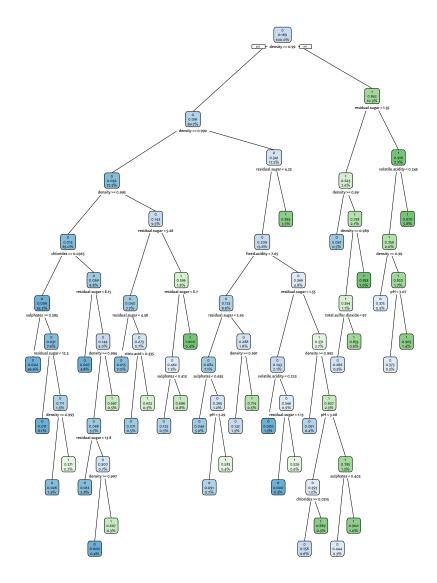


Figure 4.7: A (more complex) decision tree for the wines dataset

```
##
     30.00000 156.00000
Y_pred <- predict(t3, XY_test, type="class")</pre>
get_metrics(Y_pred, Y_test)
##
          Acc
                     Ргес
                                  Rec
                                                 F
                                                            TΝ
                                                                        FN
##
      0.91837
                  0.73433
                              0.77603
                                          0.75460 1554.00000
                                                                 71.00000
##
            FP
                       TP
     89.00000 246.00000
##
```

Remark. (*) Interestingly, rpart() also provides us with information about the importance degrees of each independent variable.

```
t1$variable.importance/sum(t1$variable.importance)
```

##	density	residual.sugar	fixed.acidity
##	0.6562490	0.1984221	0.0305167
##	chlorides	рH	volatile.acidity
##	0.0215008	0.0209678	0.0192880
##	sulphates	<pre>total.sulfur.dioxide</pre>	citric.acid
##	0.0184293	0.0140482	0.0119201
##	free.sulfur.dioxide		
##	0.0086579		

4.2.3 A Note on Decision Tree Learning

Learning an optimal decision tree is a computationally hard problem – we need some heuristics.

Examples:

- ID3 (Iterative Dichotomiser 3) (Quinlan 1986)
- C4.5 algorithm (Quinlan 1993)
- CART by Leo Breiman et al., (Breiman et al. 1984)

(**) Decision trees are most often constructed by a *greedy*, *top-down recursive partitioning*, see., e.g., (Therneau & Atkinson 2019).

4.3 Binary Logistic Regression

4.3.1 Motivation

Recall that for a regression task, we fitted a very simple family of models – the linear ones – by minimising the sum of squared residuals.

This approach was pretty effective.

```
116
```

(Very) theoretically, we could treat the class labels as numeric 0s and 1s and apply regression models in a binary classification task.

```
XY_train_r <- cbind(as.data.frame(X_train),</pre>
    Y=as.numeric(Y_train)-1 # 0.0 or 1.0
)
XY_test_r <- cbind(as.data.frame(X_test),</pre>
    Y=as.numeric(Y test)-1 # 0.0 or 1.0
f r <- lm(Y~density+residual.sugar+pH, data=XY train r)</pre>
Y_pred_r <- predict(f_r, XY_test_r)</pre>
summary(Y_pred_r)
##
      Min. 1st Qu.
                     Median
                                Mean 3rd Qu.
                                                  Max.
## -3.0468 -0.0211 0.1192 0.1645 0.3491 0.8892
The predicted outputs, \hat{Y}, are arbitrary real numbers, but we can convert them to
binary ones by checking if, e.g., \hat{Y} > 0.5.
Y_pred <- as.numeric(Y_pred_r>0.5)
round(get_metrics(Y_pred, XY_test_r$Y), 3)
```

##	Acc	Prec	Rec	F TI	I FN	FP	TP
##	0.927	0.865	0.647	0.740 1611.00	112.000	32.000	205.000

Remark. (*) The threshold T = 0.5 could even be treated as a free parameter we optimise for (w.r.t. different metrics over the validation sample), see Figure 4.8.

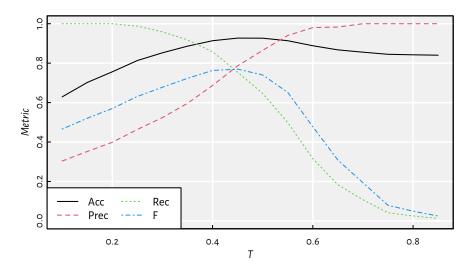


Figure 4.8: Quality metrics for a binary classifier "Classify X as 1 if f(X) > T and as 0 if $f(X) \le T$ "

Despite we can, we shouldn't use linear regression for classification. Treating class labels "0" and "1" as ordinary real numbers just doesn't cut it – we intuitively feel that we are doing something *ugly*. Luckily, there is a better, more meaningful approach that still relies on a linear model, but has the *right* semantics.

4.3.2 Logistic Model

Inspired by this idea, we could try modelling the *probability* that a given point belongs to class 1.

This could also provide us with the *confidence* in our prediction.

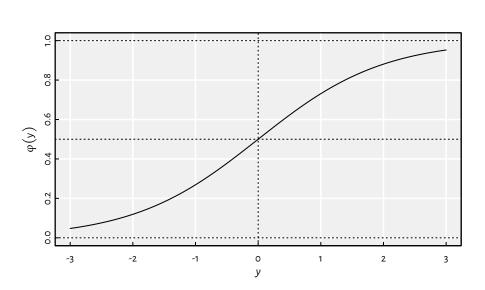
Probability is a number in [0, 1], but the outputs of a linear model are arbitrary real numbers.

However, we could transform those real-valued outputs by means of some function $\phi : \mathbb{R} \rightarrow [0,1]$ (preferably S-shaped == sigmoid), so as to get:

$$\Pr(Y = 1 | \mathbf{X}, \boldsymbol{\beta}) = \phi(\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p).$$

Remark. The above reads as "Probability that Y is from class 1 given **X** and β ".

A popular choice is the **logistic sigmoid function**, see Figure 4.9:



$$\phi(t) = \frac{1}{1 + e^{-t}} = \frac{e^t}{1 + e^t}$$

Figure 4.9: The logistic sigmoid function, φ

Hence our model becomes:

$$Y = \frac{1}{1 + e^{-(\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p)}}$$

It is an instance of a **generalised linear model** (glm) (there are of course many other possible generalisations).

4.3.3 Example in R

Let us first fit a simple (i.e., p = 1) logistic regression model using the density variable. The goodness-of-fit measure used in this problem will be discussed a bit later.

```
(f <- glm(Y~density, data=XY_train, family=binomial("logit")))</pre>
```

```
##
## Call: glm(formula = Y ~ density, family = binomial("logit"), data = XY_train)
##
## Coefficients:
## (Intercept) density
## 1173 -1184
##
## Degrees of Freedom: 2937 Total (i.e. Null); 2936 Residual
## Null Deviance: 2670
## Residual Deviance: 1420 AIC: 1420
```

"logit" above denotes the inverse of the logistic sigmoid function. The fitted coefficients are equal to:

f\$coefficients

(Intercept) density ## 1173.2 -1184.2

Figure 4.10 depicts the obtained model, which can be written as:

$$\Pr(Y = 1|x) = \frac{1}{1 + e^{-(1173.21 - 1184.21x)}}$$

with x = density.

Some predicted probabilities:

```
round(head(predict(f, XY_test, type="response"), 12), 2)
```

1602 1605 1607 1608 1609 1613 1614 1615 1621 1622 1623 1627
0.01 0.01 0.00 0.02 0.03 0.36 0.00 0.31 0.36 0.06 0.03 0.00

We classify Y as 1 if the corresponding membership probability is greater than 0.5.

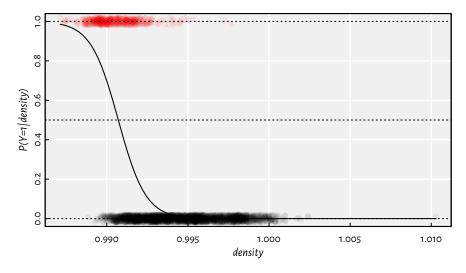


Figure 4.10: The probability that a given wine is a high-alcohol one given its density; black and red points denote the actual observed data points from the class 0 and 1, respectively

```
Y_pred <- as.numeric(predict(f, XY_test, type="response")>0.5)
get_metrics(Y_pred, Y_test)
```

##	Acc	Ргес	Rec	F	TN	FN
##	0.89796	0.72763	0.58991	0.65157	1573.00000	130.00000
##	FP	TP				
##	70.00000	187.00000				

And now a fit based on some other input variables:

```
##
## Call: glm(formula = Y ~ density + residual.sugar + total.sulfur.dioxide,
       family = binomial("logit"), data = XY_train)
##
##
## Coefficients:
##
            (Intercept)
                                       density
                                                      residual.sugar
               2.50e+03
                                     -2.53e+03
                                                            8.58e-01
##
## total.sulfur.dioxide
##
               9.74e-03
##
## Degrees of Freedom: 2937 Total (i.e. Null); 2934 Residual
```

Classification with Trees and Linear Models

```
## Null Deviance:
                        2670
## Residual Deviance: 920
                            AIC: 928
Y_pred <- as.numeric(predict(f, XY_test, type="response")>0.5)
get_metrics(Y_pred, Y_test)
##
                                              F
                                                        ΤN
                                                                    FN
          Acc
                    Ргес
                                 Rec
##
      0.93214
                 0.82394
                             0.73817
                                        0.77870 1593.00000
                                                              83.00000
##
           FP
                      TP
     50.00000 234.00000
##
```

Exercise 4.1 Try fitting different models based on other sets of features.

4.3.4 Loss Function: Cross-entropy

The fitting of the model can be written as an optimisation task:

$$\min_{\beta_0,\beta_1,\dots,\beta_p \in \mathbb{R}} \frac{1}{n} \sum_{i=1}^n \epsilon\left(\hat{y}_i, y_i\right)$$

where $\epsilon(\hat{y}_i, y_i)$ denotes the penalty that measures the "difference" between the true y_i and its predicted version $\hat{y}_i = \Pr(Y = 1 | \mathbf{x}_{i,.}, \boldsymbol{\beta})$.

In the ordinary regression, we used the squared residual $\epsilon(\hat{y}_i, y_i) = (\hat{y}_i - y_i)^2$. In **logistic regression** (the kind of a classifier we are interested in right now), we use the **cross-entropy** (a.k.a. **log-loss**, binary cross-entropy),

$$\epsilon(\hat{y}_i, y_i) = -\left(y_i \log \hat{y}_i + (1 - y_i) \log(1 - \hat{y}_i)\right)$$

The corresponding loss function has not only many nice statistical properties (** related to maximum likelihood estimation etc.) but also an intuitive interpretation.

Note that the predicted \hat{y}_i is in (0, 1) and the true y_i equals to either 0 or 1. Recall also that $\log t \in (-\infty, 0)$ for $t \in (0, 1)$. Therefore, the formula for $\epsilon(\hat{y}_i, y_i)$ has a very intuitive behaviour:

- if true $y_i = 1$, then the penalty becomes $\epsilon(\hat{y}_i, 1) = -\log(\hat{y}_i)$
 - \hat{y}_i is the probability that the classified input is indeed from class 1
 - we'd be happy if the classifier outputted $\hat{y}_i \simeq 1$ in this case; this is not penalised as $-\log(t) \rightarrow 0$ as $t \rightarrow 1$
 - however, if the classifier is totally wrong, i.e., it thinks that $\hat{y}_i \simeq 0$, then the penalty will be very high, as $-\log(t) \rightarrow +\infty$ as $t \rightarrow 0$
- if true $y_i = 0$, then the penalty becomes $\epsilon(\hat{y}_i, 0) = -\log(1 \hat{y}_i)$
 - $1 \hat{y}_i$ is the predicted probability that the input is from class 0

- we penalise heavily the case where $1 - \hat{y}_i$ is small (we'd be happy if the classifier was sure that $1 - \hat{y}_i \simeq 1$, because this is the ground-truth)

(*) Having said that, let's expand the above formulae. The task of minimising crossentropy in the binary logistic regression can be written as $\min_{\beta \in \mathbb{R}^{p+1}} E(\beta)$ with:

$$E(\boldsymbol{\beta}) = -\frac{1}{n} \sum_{i=1}^{n} y_i \log \Pr(Y = 1 | \mathbf{x}_{i,\cdot}, \boldsymbol{\beta}) + (1 - y_i) \log(1 - \Pr(Y = 1 | \mathbf{x}_{i,\cdot}, \boldsymbol{\beta}))$$

Taking into account that:

$$\Pr(Y = 1 | \mathbf{x}_{i,.}, \boldsymbol{\beta}) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_{i,1} + \dots + \beta_p x_{i,p})}},$$

we get:

$$E(\boldsymbol{\beta}) = -\frac{1}{n} \sum_{i=1}^{n} \left(\begin{array}{c} y_i \log \frac{1}{1 + e^{-(\beta_0 + \beta_1 x_{i,1} + \dots + \beta_p x_{i,p})}}{e^{-(\beta_0 + \beta_1 x_{i,1} + \dots + \beta_p x_{i,p})}} \\ +(1 - y_i) \log \frac{e^{-(\beta_0 + \beta_1 x_{i,1} + \dots + \beta_p x_{i,p})}}{1 + e^{-(\beta_0 + \beta_1 x_{i,1} + \dots + \beta_p x_{i,p})}} \end{array} \right)$$

Logarithms are really practitioner-friendly functions, it holds:

- $\log 1 = 0$,
- $\log e = 1$ (where $e \simeq 2.71828$ is the Euler constant; note that by writing log we mean the natural a.k.a. base-*e* logarithm),
- $\log xy = \log x + \log y$,
- $\log x^p = p \log x$ (this is $\log(x^p)$, not $(\log x)^p$).

These facts imply, amongst others that:

- $\log e^x = x \log e = x$,
- $\log \frac{x}{y} = \log x y^{-1} = \log x + \log y^{-1} = \log x \log y$ (of course for $y \neq 0$),
- $\log \frac{1}{y} = -\log y$

and so forth. Therefore, based on the fact that $1/(1 + e^{-x}) = e^x/(1 + e^x)$, the above optimisation problem can be rewritten as:

$$E(\boldsymbol{\beta}) = \frac{1}{n} \sum_{i=1}^{n} \left(\begin{array}{c} y_i \log \left(1 + e^{-(\beta_0 + \beta_1 x_{i,1} + \dots + \beta_p x_{i,p})} \right) \\ +(1 - y_i) \log \left(1 + e^{+(\beta_0 + \beta_1 x_{i,1} + \dots + \beta_p x_{i,p})} \right) \end{array} \right)$$

or, if someone prefers:

$$E(\boldsymbol{\beta}) = \frac{1}{n} \sum_{i=1}^{n} \left((1 - y_i) \left(\beta_0 + \beta_1 x_{i,1} + \dots + \beta_p x_{i,p} \right) + \log \left(1 + e^{-(\beta_0 + \beta_1 x_{i,1} + \dots + \beta_p x_{i,p})} \right) \right)$$

It turns out that there is no analytical formula for the optimal set of parameters $(\beta_0, \beta_1, ..., \beta_p$ minimising the log-loss). In the chapter on optimisation, we shall see that the solution to the logistic regression can be solved numerically by means of quite simple iterative algorithms. The two expanded formulae have lost the appealing interpretation of the original one, however, it's more numerically well-behaving, see, e.g., the log1p() function in base R or, even better, fermi_dirac_0() in the gsl package.

4.4 Exercises in R

4.4.1 EdStats – Preparing Data

In this exercise, we will prepare the EdStats dataset for further analysis. The file edstats_2019.csv provides us with many country-level Education Statistics extracted from the World Bank's Databank, see https://databank.worldbank.org/. Databank aggregates information from such sources as the UNESCO Institute for Statistics, OECD Programme for International Student Assessment (PISA) etc. The official description reads:

"The World Bank EdStats Query holds around 2,500 internationally comparable education indicators for access, progression, completion, literacy, teachers, population, and expenditures. The indicators cover the education cycle from pre-primary to tertiary education. The query also holds learning outcome data from international learning assessments (PISA, TIMSS, etc.), equity data from household surveys, and projection data to 2050."

edstats_2019.csv was compiled on 24 April 2020 and lists indicators reported between 2010 and 2019. First, let's load the dataset:

CountryName CountryCode ## 1 Afghanistan AFG 2 Afghanistan AFG ## ## 3 Afghanistan AFG ## 4 Afghanistan AFG ## 5 Afghanistan AFG ## 6 Afghanistan AFG ## Series Government expenditure on education as % of GDP (%) ## 1 Gross enrolment ratio, primary, female (%) ## 2 ## 3 Net enrolment rate, primary, female (%) Primary completion rate, both sexes (%) ## 4 PISA: Mean performance on the mathematics scale ## 5 PISA: Mean performance on the mathematics scale. Female ## 6 ## Code Y2010 Y2011 Y2012 Y2013 Y2014 Y2015 ## 1 SE.XPD.TOTL.GD.ZS 3.4794 3.462 2.6042 3.4545 3.6952 3.2558 2 SE.PRM.ENRR.FE 80.6355 80.937 86.3288 85.9021 86.7296 83.5044 ## ## 3 SE.PRM.NENR.FE NA NA NA NA NA NA SE.PRM.CMPT.ZS ## 4 NA NA NA NA NA NA LO.PISA.MAT ## 5 NA NA NA NA NA NA ## 6 LO.PISA.MAT.FE NA NA NA NA NA NA ## Y2016 Y2017 Y2018 Y2019 4.2284 4.0589 ## 1 NA NA 2 82.5584 82.0803 82.850 NA ## ## 3 NA NA NA NA ## 4 79.9346 84.4150 85.625 NA ## 5 NA NA NA NA ## 6 NA NA NA NA

This data frame is in a "long" format, where each indicator for each country is given in its own row. Note that some indicators are not surveyed/updated every year.

Exercise 4.2 Convert edstats_2019 to a "wide" format (one row per country, each indicator in its own column) based on the most recent observed indicators.

Solution.

124

First we need a function that returns the last non-missing value in a given numeric vector. To recall, na.omit(), removes all missing values and tail() can be used to access the last observation easily. Unfortunately, if the vector is consists of missing values only, the removal of NAs leads to an empty sequence. However, the trick we can use is that by extracting the first element from an empty vector by using [...], we get a NA.

```
last_non_na <- function(x) tail(na.omit(x), 1)[1]
last_non_na(c(1, 2, NA, 3, NA, NA)) # example 1
```

[1] 3

last_non_na(c(NA,NA,NA,NA,NA,NA)) # example 2

[1] NA

Let's extract the most recent indicator from each row in edstats_2019.

```
values <- apply(edstats_2019[-(1:4)], 1, last_non_na)
head(values)</pre>
```

[1] 4.0589 82.8503 NA 85.6253 NA NA

Now, we shall create a data frame with 3 columns: name of the country, indicator code, indicator value. Let's order it with respect to the first two columns.

```
edstats_2019 <- edstats_2019[c("CountryName", "Code")]
# add a new column at the righthand end:
edstats_2019["Value"] <- values
edstats_2019 <- edstats_2019[
    order(edstats_2019$CountryName, edstats_2019$Code), ]
head(edstats_2019)</pre>
```

```
## CountryName Code Value
## 59 Afghanistan HD.HCI.AMRT 0.7797
## 57 Afghanistan HD.HCI.AMRT.FE 0.8018
## 58 Afghanistan HD.HCI.AMRT.MA 0.7597
## 53 Afghanistan HD.HCI.EYRS 8.5800
## 51 Afghanistan HD.HCI.EYRS.FE 6.7300
## 52 Afghanistan HD.HCI.EYRS.MA 9.2100
```

To convert the data frame to a "wide" format, many readers would choose the pivot_wider() function from the tidyr package (amongst others).

```
library("tidyr")
edstats <- as.data.frame(
    pivot_wider(edstats_2019, names_from="Code", values_from="Value")
)
edstats[1, 1:7]
## CountryName HD.HCI.AMRT HD.HCI.AMRT.FE HD.HCI.AMRT.MA HD.HCI.EYRS
## 1 Afghanistan 0.7797 0.8018 0.7597 8.58</pre>
```

I Argnantstan 0.797 0.8018 0.75 ## HD.HCI.EYRS.FE HD.HCI.EYRS.MA ## 1 6.73 9.21

On a side note (*), the above solution is of course perfectly fine and we can now live long and prosper. Nevertheless, we are here to learn new skills, so let's note that it has the drawback that it required us to search for the answer on the internet (and go through many "answers" that actually don't work). If we are not converting between the long and the wide formats on a daily basis, this might not be worth the hassle (moreover, there's no guarantee that this function will work the same way in the future, that the package we relied on will provide the same API etc.).

Instead, by relaying on a bit deeper knowledge of R programming (which we already have, see Appendices A-D of our book), we could implement the relevant procedure manually. The downside is that this requires us to get out of our comfort zone and... think.

First, let's generate the list of all countries and indicators:

```
countries <- unique(edstats_2019$CountryName)
head(countries)</pre>
```

[1] "Afghanistan" "Albania" "Algeria" "American Samoa" ## [5] "Andorra" "Angola"

```
indicators <- unique(edstats_2019$Code)
head(indicators)</pre>
```

[1] "HD.HCI.AMRT" "HD.HCI.AMRT.FE" "HD.HCI.AMRT.MA" "HD.HCI.EYRS"
[5] "HD.HCI.EYRS.FE" "HD.HCI.EYRS.MA"

Second, note that edstats_2019 gives all the possible combinations (pairs) of the indexes and countries:

nrow(edstats_2019) # number of rows in edstats_2019

[1] 23852

```
length(countries)*length(indicators) # number of pairs
```

[1] 23852

Looking at the numbers in the Value column of edstats_2019, this will exactly provide us with our desired "wide" data matrix, if we read it in a rowwise manner. Hence, we can use mat-rix(..., byrow=TRUE) to generate it:

```
# edstats_2019 is already sorted w.r.t. CountryName and Code
edstats2 <- cbind(
    CountryName=countries, # first column
    as.data.frame(
        matrix(edstats_2019$Value,
        byrow=TRUE,
        ncol=length(indicators),
        dimnames=list(NULL, indicators)
    )))
identical(edstats, edstats2)
```

[1] TRUE

Exercise 4.3 Export edstats to a CSV file.

Solution.

This can be done as follows:

write.csv(edstats, "edstats_2019_wide.csv", row.names=FALSE)

We didn't export the row names, because they're useless in our case.

Exercise 4.4 Explore edstats_meta.csv to understand the meaning of the EdStats indicators.

Solution.

First, let's load the dataset:
meta <- read.csv("datasets/edstats_meta.csv")
names(meta) # column names</pre>

[1] "Code" "Series" "Definition" "Source" "Topic"
The Series column deciphers each indicator's meaning. For instance, LO.PISA.MAT gives:
meta[meta\$Code=="LO.PISA.MAT", "Series"]

[1] "PISA: Mean performance on the mathematics scale"

To get more information, we can take a look at the Definition column:

meta[meta\$Code=="LO.PISA.MAT", "Definition"]

which reads: Average score of 15-year-old students on the PISA mathematics scale. The metric for the overall mathematics scale is based on a mean for OECD countries of 500 points and a standard deviation of 100 points. Data reflects country performance in the stated year according to PISA reports, but may not be comparable across years or countries. Consult the PISA website for more detailed information: http://www.oecd.org/pisa/.

4.4.2 EdStats – Where Girls Are Better at Maths Than Boys?

In this task we will consider the "wide" version of the EdStats dataset:

```
## CountryName HD.HCI.AMRT HD.HCI.AMRT.FE HD.HCI.AMRT.MA HD.HCI.EYRS
## 1 Afghanistan 0.7797 0.8018 0.7597 8.58
## HD.HCI.EYRS.FE
## 1 6.73
```

```
meta <- read.csv("datasets/edstats_meta.csv")</pre>
```

This dataset is small, moreover, we'll be more interested in the description (understanding) of data, not prediction of the response variable to unobserved samples. Note that we have the *population* of the World countries at hand here (new countries do not arise on a daily basis). Therefore, a train-test split won't be performed.

Exercise 4.5 Add a 0/1 factor-type variable girls_rule_maths that is equal to 1 if and only if a country's average score of 15-year-old female students on the PISA mathematics scale is greater than the corresponding indicator for the male ones.

Solution.

```
Recall that a conversion of a logical value to a number yields 1 for TRUE and 0 for FALSE. Hence:
```

```
edstats$girls_rule_maths <-
factor(as.numeric(
edstats$LO.PISA.MAT.FE>edstats$LO.PISA.MAT.MA
))
head(edstats$girls_rule_maths, 10)
```

```
## [1] <NA> 1 1 <NA> <NA> <NA> <NA> <NA> 0 <NA>
## Levels: 0 1
```

Unfortunately, there are many missing values in the dataset. More precisely:

```
sum(is.na(edstats$girls_rule_maths)) # count
```

```
## [1] 187
mean(is.na(edstats$girls_rule_maths)) # proportion
```

[1] 0.69776

Countries such as Egypt, India, Iran or Venezuela are not amongst the 79 members of the Programme for International Student Assessment. Thus, we'll have to deal with the data we have.

```
The percentage of counties where "girls rule" is equal to:
```

```
mean(edstats$girls_rule_maths==1, na.rm=TRUE)
```

[1] 0.33333

Here is the list of those counties:

```
as.character(na.omit(
    edstats[edstats$girls_rule_maths==1, "CountryName"]
))
## [1] "Albania" "Algeria"
## [3] "Brunei Darussalam" "Bulgaria"
## [5] "Cyprus" "Dominican Republic"
```

```
##
  [7] "Finland"
                                "Georgia"
## [9] "Hong Kong SAR, China" "Iceland"
## [11] "Indonesia"
                                "Israel"
## [13] "Jordan"
                                "Lithuania"
## [15] "Malaysia"
                                "Malta"
## [17] "Moldova"
                                "North Macedonia"
## [19] "Norway"
                                "Philippines"
## [21] "Qatar"
                                "Saudi Arabia"
## [23] "Sweden"
                                "Thailand"
## [25] "Trinidad and Tobago" "United Arab Emirates"
## [27] "Vietnam"
```

Exercise 4.6 Learn a decision tree that distinguishes between the countries where girls are better at maths than boys and assess the quality of this classifier.

Solution.

Let's first create a subset of edstats that doesn't include the country names as well as the boys' and girls' math scores.

Fitting and plotting (see Figure 4.11) of the tree can be performed as follows:

```
library("rpart")
library("rpart.plot")
tree <- rpart(girls_rule_maths~., data=edstats_subset,
    method="class", model=TRUE)
rpart.plot(tree)</pre>
```

The variables included in the model are:

Note that the decision rules are well-interpretable, we can make a whole story around it. Whether or not it is actually true – is a different... story.

To compute the basic classifier performance scores, let's recall the get_metrics() function:

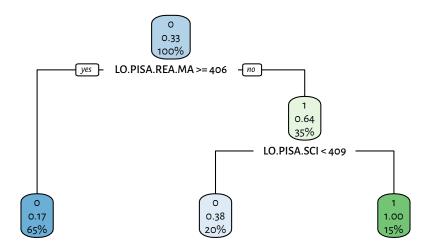


Figure 4.11: A decision tree explaining the girls_rule_maths variable

TN=C[1,1], FN=C[1,2], FP=C[2,1], TP=C[2,2]) # return a named vector

Now we can judge the tree's character:

```
Y_pred <- predict(tree, edstats_subset, type="class")
get_metrics(Y_pred, edstats_subset$girls_rule_maths)</pre>
```

 ##
 Acc
 Prec
 Rec
 F
 TN
 FN
 FP
 TP

 ##
 0.81481
 1.00000
 0.44444
 0.61538
 54.00000
 15.00000
 0.00000
 12.00000

Exercise 4.7 Learn a decision tree that this time doesn't rely on any of the PISA indicators.

Solution.

7

Let's remove the unwanted variables:

```
edstats_subset <- edstats[!(names(edstats) %in%
c("LO.PISA.MAT", "LO.PISA.MAT.FE", "LO.PISA.MAT.MA",
    "LO.PISA.REA", "LO.PISA.REA.FE", "LO.PISA.REA.MA",
    "LO.PISA.SCI", "LO.PISA.SCI.FE", "LO.PISA.SCI.MA",
    "CountryName"))]</pre>
```

On a side note, this could be done more easily by calling, e.g., stri_startswith_fixed(names(edstats), "LO.PISA") from the stringipackage.

Fitting and plotting (see Figure 4.12) of the tree:

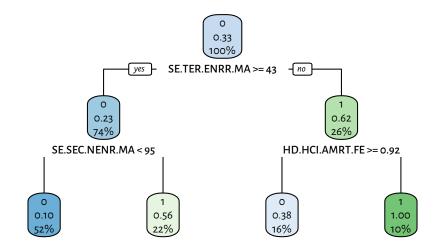


Figure 4.12: Another decision tree explaining the girls_rule_maths variable

Performance metrics:

```
Y_pred <- predict(tree, edstats, type="class")
get_metrics(Y_pred, edstats_subset$girls_rule_maths)</pre>
```

Acc Prec Rec F TN FN FP TP ## 0.79012 0.69231 0.66667 0.67925 46.00000 9.00000 8.00000 18.00000

It's interesting to note that some of the goodness-of-fit measures are actually higher now.

The variables included in the model are:

4.4.3 EdStats and World Factbook – Joining Forces

In the course of our data science journey, we have considered two datasets dealing with country-level indicators: the World Factbook and World Bank's EdStats.

Let's combine the information they provide and see if we come up with a better model of where girls' math scores are higher.

Exercise 4.8 Some country names in one dataset don't match those in the other one, for instance: Czech Republic vs. Czechia, Myanmar vs. Burma, etc. Resolve these conflicts as best you can.

Solution.

To get a list of the mismatched country names, we can call either:

factbook\$country[!(factbook\$country %in% edstats\$CountryName)]

or:

edstats\$CountryName[!(edstats\$CountryName %in% factbook\$country)]

Unfortunately, the data need to be cleaned manually – it's a tedious task. The following consists of what we hope are the best matches between the two datasets (yet, the list is not perfect; in particular, the Republic of North Macedonia is completely missing in one of the datasets):

```
from_to <- matrix(ncol=2, byrow=TRUE, c(</pre>
# FROM (edstats)
                               # TO (factbook)
                           , "Brunei"
"Brunei Darussalam"
                            , "Congo, Democratic Republic of the"
"Congo, Dem. Rep."
                           , "Congo, Republic of the"
"Congo, Rep."
"Czech Republic"
                            , "Czechia"
                                                                 ,
                            , "Egypt"
"Egypt, Arab Rep."
                                                                 ,
"Hong Kong SAR, China"
                          , "Hong Kong"
                                                                 ,
                            , "Iran"
"Iran, Islamic Rep."
"Korea, Dem. People's Rep.", "Korea, North"
                                                                 ,
                            , "Korea, South"
"Korea, Rep."
                                                                 ,
                            , "Kyrgyzstan"
"Kyrgyz Republic"
                                                                 ,
                            , "Laos"
"Lao PDR"
                                                                 ,
"Macao SAR, China"
                            , "Macau"
"Micronesia, Fed. Sts."
                            , "Micronesia, Federated States of"
                                                                 ,
                            , "Burma"
"Mvanmar"
                                                                 ,
                         , "Russia"
"Russian Federation"
                                                                 ,
                            , "Slovakia"
"Slovak Republic"
"St. Kitts and Nevis" , "Saint Kitts and Nevis"
                                                                 .
                            , "Saint Lucia"
"St. Lucia"
                                                                 ,
"St. Martin (French part)" , "Saint Martin"
"St. Vincent and the Grenadines", "Saint Vincent and the Grenadines"
```

```
"Syrian Arab Republic" , "Syria" ,
"Venezuela, RB" , "Venezuela" ,
"Virgin Islands (U.S.)" , "Virgin Islands" ,
"Yemen, Rep." , "Yemen"
))
```

Conversion of the names:

```
for (i in 1:nrow(from_to)) {
    edstats$CountryName[edstats$CountryName==from_to[i,1]] <- from_to[i,2]
}</pre>
```

On a side note (*), this could be done with a single call to a function in the stringi package:

```
library("stringi")
edstats$CountryName <- stri_replace_all_fixed(edstats$CountryName,
    from_to[,1], from_to[,2], vectorize_all=FALSE)</pre>
```

Exercise 4.9 Merge (join) the two datasets based on the country names.

Solution.

This can be done by means of the merge() function.

```
edbook <- merge(edstats, factbook, by.x="CountryName", by.y="country")
ncol(edbook) # how many columns we have now</pre>
```

[1] 157

Exercise 4.10 Learn a decision tree that distinguishes between the countries where girls are better at maths than boys and assess the quality of this classifier.

Solution.

We proceed as in one of the previous exercises:

```
edbook$girls_rule_maths <-
    factor(as.numeric(
        edbook$L0.PISA.MAT.FE>edbook$L0.PISA.MAT.MA
    ))
edbook_subset <- edbook[!(names(edbook) %in%
    c("CountryName", "L0.PISA.MAT.FE", "L0.PISA.MAT.MA"))]</pre>
```

Fitting and plotting (see Figure 4.13):

```
library("rpart")
library("rpart.plot")
tree <- rpart(girls_rule_maths~., data=edbook_subset,
        method="class", model=TRUE)
rpart.plot(tree)</pre>
```

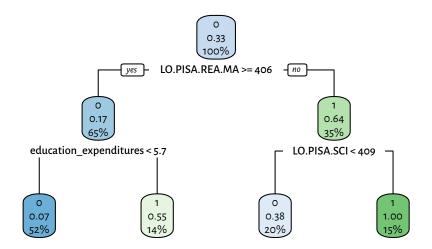


Figure 4.13: Yet another decision tree explaining the girls_rule_maths variable

```
Performance metrics:

Y_pred <- predict(tree, edbook_subset, type="class")
get_metrics(Y_pred, edbook_subset$girls_rule_maths)
## Acc Prec Rec F TN FN FP TP
## 0.82716 0.78261 0.66667 0.72000 49.00000 9.00000 5.00000 18.00000</pre>
```

The variables included in the model are:

This is... not at all enlightening. Rest assured that experts in education or econometrics for whom we work in this (imaginary) project would raise many questions at this very point. Merely applying some computational procedure on a dataset doesn't cut it; it's too early to ask for a paycheque. Classifiers are just blind tools in our gentle yet firm hands; new questions are risen, new answers must be sought. Further explorations are of course left as an exercise to the kind reader.

4.4.4 EdStats – Fitting of Binary Logistic Regression Models

In this task we're going to consider the "wide" version of the EdStats dataset again:

Let's re-add the girls_rule_maths column just as in the previous exercise. Then, let's create a subset of edstats that doesn't include the country names as well as the boys' and girls' math scores.

```
edstats$girls_rule_maths <-
    factor(as.numeric(
        edstats$L0.PISA.MAT.FE>edstats$L0.PISA.MAT.MA
    ))
edstats_subset <- edstats[!(names(edstats) %in%
        c("CountryName", "L0.PISA.MAT.FE", "L0.PISA.MAT.MA"))]</pre>
```

Exercise 4.11 Fit and assess a logistic regression model for girls_rule_maths as a function of LO.PISA.REA.MA+LO.PISA.SCI.

Solution.

Fitting of the model:

```
##
## Call:
          glm(formula = girls rule maths ~ LO.PISA.REA.MA + LO.PISA.SCI,
##
       family = binomial("logit"), data = edstats_subset)
##
## Coefficients:
##
      (Intercept) LO.PISA.REA.MA
                                      LO.PISA.SCI
           3.0927
                                           0.0755
##
                          -0.0882
##
## Degrees of Freedom: 80 Total (i.e. Null); 78 Residual
##
     (187 observations deleted due to missingness)
## Null Deviance:
                        103
## Residual Deviance: 77.9 AIC: 83.9
```

```
Performance metrics:
```

```
Y_pred <- as.numeric(predict(f1, edstats_subset, type="response")>0.5)
get_metrics(Y_pred, edstats_subset$girls_rule_maths)
```

 ##
 Acc
 Prec
 Rec
 F
 TN
 FN
 FP
 TP

 ##
 0.79012
 0.75000
 0.55556
 0.63830
 49.00000
 12.00000
 5.00000
 15.00000

 Relate the above numbers to those reported for the fitted decision trees.

Note that the fitted model is nicely interpretable: the lower the boys' average result on the Read-

ing Scale or the higher the country's result on the Science Scale, the higher the probability for girls_rule_maths:

```
example_X <- data.frame(</pre>
    LO.PISA.REA.MA=c(475, 450, 475, 500),
    LO.PISA.SCI= c(525, 525, 550, 500)
)
cbind(example X,
    `Pr(Y=1)`=predict(f1, example X, type="response"))
     LO.PISA.REA.MA LO.PISA.SCI Pr(Y=1)
##
## 1
                475
                             525 0.703342
## 2
                450
                             525 0.955526
                             550 0.939986
## 3
                475
                             500 0.038094
## 4
                500
```

Exercise 4.12 (*) Fit and assess a logistic regression model for girls_rule_maths featuring all LO.PISA.REA* and LO.PISA.SCI* as independent variables.

Solution.

Model fitting:

```
(f2 <- glm(girls_rule_maths~L0.PISA.REA+L0.PISA.REA.FE+L0.PISA.REA.MA+
L0.PISA.SCI+L0.PISA.SCI.FE+L0.PISA.SCI.MA,
data=edstats_subset, family=binomial("logit")))
```

```
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
##
## Call: glm(formula = girls_rule_maths ~ LO.PISA.REA + LO.PISA.REA.FE +
       LO.PISA.REA.MA + LO.PISA.SCI + LO.PISA.SCI.FE + LO.PISA.SCI.MA,
##
       family = binomial("logit"), data = edstats_subset)
##
##
  Coefficients:
##
##
      (Intercept)
                      LO.PISA.REA LO.PISA.REA.FE LO.PISA.REA.MA
           -2.265
                                                            -0.734
##
                            1.268
                                            -0.544
##
      LO.PISA.SCI LO.PISA.SCI.FE LO.PISA.SCI.MA
            1.269
                           -0.157
                                           -1.112
##
##
## Degrees of Freedom: 80 Total (i.e. Null); 74 Residual
     (187 observations deleted due to missingness)
##
## Null Deviance:
                        103
## Residual Deviance: 33
                            AIC: 47
```

The mysterious fitted probabilities numerically 0 or 1 occurred warning denotes convergence problems of the underlying optimisation (fitting) procedure: at least one of the model coefficients has had a fairly large order of magnitude and hence the fitted probabilities has come very close to 0 or 1. Recall that the probabilities are modelled by means of the logistic sigmoid function applied on the output of a linear combination of the dependent variables. Moreover, cross-entropy features a logarithm, and $\log 0 = -\infty$.

This can be due to the fact that all the variables in the model are very correlated with each other (multicollinearity; an ill-conditioned problem). The obtained solution might be unstable – there might be many local optima and hence, different parameter vectors might be equally good. Moreover, it is likely that a small change in one of the inputs might lead to large change in the estimated model (* normally, we would attack this problem by employing some regularisation techniques).

Of course, the model's performance metrics can still be computed, but then it's better if we treat it as a black box. Or, even better, reduce the number of independent variables and come up with a simpler model that serves its purpose better than this one.

```
Y_pred <- as.numeric(predict(f2, edstats_subset, type="response")>0.5)
get_metrics(Y_pred, edstats_subset$girls_rule_maths)
```

 ##
 Acc
 Prec
 Rec
 F
 TN
 FN
 FP
 TP

 ##
 0.86420
 0.83333
 0.74074
 0.78431
 50.00000
 7.00000
 4.00000
 20.00000

4.4.5 EdStats – Variable Selection in Binary Logistic Regression (*)

Back to our girls_rule_maths example, we still have so much to learn!

Exercise 4.13 Construct a binary logistic regression model via forward selection of variables.

Solution.

Just as in the linear regression case, we can rely on the step() function.

```
## girls_rule_maths ~ HD.HCI.AMRT + HD.HCI.AMRT.FE + HD.HCI.AMRT.MA +
## HD.HCI.EYRS + HD.HCI.EYRS.FE + HD.HCI.EYRS.MA + HD.HCI.HLOS +
```

```
##
       HD.HCI.HLOS.FE + HD.HCI.HLOS.MA + HD.HCI.MORT + HD.HCI.MORT.FE +
##
       HD.HCI.MORT.MA + HD.HCI.OVRL + HD.HCI.OVRL.FE + HD.HCI.OVRL.MA +
       IT.CMP.PCMP.P2 + IT.NET.USER.P2 + LO.PISA.MAT + LO.PISA.REA +
##
       LO.PISA.REA.FE + LO.PISA.REA.MA + LO.PISA.SCI + LO.PISA.SCI.FE +
##
##
      LO.PISA.SCI.MA + NY.GDP.MKTP.CD + NY.GDP.PCAP.CD + NY.GDP.PCAP.PP.CD +
##
      NY.GNP.PCAP.CD + NY.GNP.PCAP.PP.CD + SE.COM.DURS + SE.PRM.CMPT.FE.ZS +
##
       SE.PRM.CMPT.MA.ZS + SE.PRM.CMPT.ZS + SE.PRM.ENRL.TC.ZS +
       SE.PRM.ENRR + SE.PRM.ENRR.FE + SE.PRM.ENRR.MA + SE.PRM.NENR +
##
##
      SE.PRM.NENR.FE + SE.PRM.NENR.MA + SE.PRM.PRIV.ZS + SE.SEC.ENRL.TC.ZS +
##
       SE.SEC.ENRR + SE.SEC.ENRR.FE + SE.SEC.ENRR.MA + SE.SEC.NENR +
##
       SE.SEC.NENR.MA + SE.SEC.PRIV.ZS + SE.TER.ENRR + SE.TER.ENRR.FE +
##
     SE.TER.ENRR.MA + SE.TER.PRIV.ZS + SE.XPD.TOTL.GD.ZS + SL.TLF.ADVN.FE.ZS +
      SL.TLF.ADVN.MA.ZS + SL.TLF.ADVN.ZS + SP.POP.TOTL + SP.POP.TOTL.FE.IN +
##
       SP.POP.TOTL.MA.IN + SP.PRM.TOTL.FE.IN + SP.PRM.TOTL.IN +
##
##
       SP.PRM.TOTL.MA.IN + SP.SEC.TOTL.FE.IN + SP.SEC.TOTL.IN +
##
       SP.SEC.TOTL.MA.IN + UIS.PTRHC.56 + UIS.SAP.CE + UIS.SAP.CE.F +
##
       UIS.SAP.CE.M + UIS.X.PPP.1.FSGOV + UIS.X.PPP.2T3.FSGOV +
##
       UIS.X.PPP.5T8.FSGOV + UIS.X.US.1.FSGOV + UIS.X.US.2T3.FSGOV +
       UIS.X.US.5T8.FSGOV + UIS.XGDP.1.FSGOV + UIS.XGDP.23.FSGOV +
##
     UIS.XGDP.56.FSGOV + UIS.XUNIT.GDPCAP.1.FSGOV + UIS.XUNIT.GDPCAP.23.FSGOV +
##
##
       UIS.XUNIT.GDPCAP.5T8.FSGOV + UIS.XUNIT.PPP.1.FSGOV.FFNTR +
##
       UIS.XUNIT.PPP.2T3.FSGOV.FFNTR + UIS.XUNIT.PPP.5T8.FSGOV.FFNTR +
       UIS.XUNIT.US.1.FSGOV.FFNTR + UIS.XUNIT.US.23.FSGOV.FFNTR +
##
##
       UIS.XUNIT.US.5T8.FSGOV.FFNTR
f <- step(glm(model empty, data=edstats subset, family=binomial("logit")),</pre>
    scope=model_full, direction="forward")
```

Start: AIC=105.12
girls_rule_maths ~ 1

Error in model.matrix.default(Terms, m, contrasts.arg = object\$contrasts): variable 1

Melbourne, we have a problem! Our dataset has too many missing values, and those cannot be present in a logistic regression model (it's based on a linear combination of variables, and sums/products involving NAs yield NAs...).

Looking at the manual of ?step, we see that the default NA handling is via na.omit(), and that, when applied on a data frame, results in the removal of all the rows, where there is at least one NA. Sadly, it's too invasive.

We should get rid of the data blanks manually. First, definitely, we should remove all the rows where girls_rule_maths is unknown:

```
edstats_subset <-
    edstats_subset[!is.na(edstats_subset$girls_rule_maths),]</pre>
```

We are about to apply the forward selection process, whose purpose is to choose variables for

a model. Therefore, instead of removing any more rows, we should remove the... columns with missing data:

```
edstats_subset <-
    edstats_subset[,colSums(sapply(edstats_subset, is.na))==0]</pre>
```

(*) Alternatively, we could apply some techniques of missing data imputation; this is beyond the scope of this book. For instance, NAs could be replaced by the averages of their respective columns.

```
We are ready now to make use of step().
```

```
model empty <- girls rule maths~1
(model full <- formula(model.frame(girls rule maths~.,</pre>
    data=edstats subset)))
## girls rule maths ~ IT.NET.USER.P2 + LO.PISA.MAT + LO.PISA.REA +
##
       LO.PISA.REA.FE + LO.PISA.REA.MA + LO.PISA.SCI + LO.PISA.SCI.FE +
       LO.PISA.SCI.MA + NY.GDP.MKTP.CD + NY.GDP.PCAP.CD + SP.POP.TOTL
##
f <- step(glm(model_empty, data=edstats_subset, family=binomial("logit")),</pre>
    scope=model_full, direction="forward")
## Start: AIC=105.12
## girls rule maths ~ 1
##
##
                    Df Deviance
                                  AIC
## + LO.PISA.REA.MA
                           90.9 94.9
                     1
## + LO.PISA.SCI.MA 1
                           93.3 97.3
## + NY.GDP.MKTP.CD 1
                           94.2 98.2
## + LO.PISA.REA
                     1
                           95.0 99.0
## + LO.PISA.SCI
                     1
                           96.9 100.9
## + LO.PISA.MAT
                           97.2 101.2
                     1
## + LO.PISA.REA.FE 1
                           97.9 101.9
## + LO.PISA.SCI.FE 1
                           99.4 103.4
## <none>
                          103.1 105.1
## + SP.POP.TOTL
                     1
                          101.9 105.9
## + NY.GDP.PCAP.CD
                          102.3 106.3
                     1
## + IT.NET.USER.P2 1
                          103.1 107.1
##
## Step: AIC=94.93
## girls_rule_maths ~ LO.PISA.REA.MA
##
                    Df Deviance AIC
##
## + LO.PISA.REA
                     1
                           42.8 48.8
## + LO.PISA.REA.FE
                     1
                           50.5 56.5
## + LO.PISA.SCI.FE
                     1
                           65.4 71.4
## + LO.PISA.SCI
                           77.9 83.9
                     1
## + LO.PISA.MAT
                     1
                           83.5 89.5
```

```
## + NY.GDP.MKTP.CD 1
                           87.4 93.4
                           87.5 93.5
## + IT.NET.USER.P2 1
## <none>
                           90.9 94.9
## + NY.GDP.PCAP.CD 1
                           89.2 95.2
## + 10.PTSA.SCT.MA 1
                           89.2 95.2
## + SP.POP.TOTL
                     1
                           90.2 96.2
##
## Step: AIC=48.83
## girls_rule_maths ~ LO.PISA.REA.MA + LO.PISA.REA
##
##
                    Df Deviance AIC
## <none>
                           42.8 48.8
                   1
                           40.9 48.9
## + LO.PISA.SCI.FE
## + SP.POP.TOTL
                           41.2 49.2
                     1
## + NY.GDP.PCAP.CD 1
                           41.3 49.3
## + LO.PISA.SCI
                     1
                         42.0 50.0
## + LO.PISA.MAT
                         42.4 50.4
                     1
## + IT.NET.USER.P2 1
                         42.7 50.7
## + LO.PISA.SCI.MA 1
                         42.7 50.7
## + NY.GDP.MKTP.CD 1
                           42.7 50.7
## + LO.PISA.REA.FE 1
                           42.8 50.8
print(f)
##
         glm(formula = girls rule maths ~ LO.PISA.REA.MA + LO.PISA.REA,
## Call:
       family = binomial("logit"), data = edstats_subset)
##
##
## Coefficients:
##
      (Intercept) LO.PISA.REA.MA
                                      LO.PISA.REA
           -0.176
                           -0.600
                                            0.577
##
##
## Degrees of Freedom: 80 Total (i.e. Null); 78 Residual
## Null Deviance:
                        103
## Residual Deviance: 42.8 AIC: 48.8
Y pred <- as.numeric(predict(f, edstats subset, type="response")>0.5)
get_metrics(Y_pred, edstats_subset$girls_rule_maths)
##
                                     F
                                                               FP
                                                                        ΤР
        Acc
                Prec
                          Rec
                                             ΤN
                                                      FN
##
    0.88889
            0.84615 0.81481 0.83019 50.00000 5.00000 4.00000 22.00000
```

Exercise 4.14 Choose a model via backward elimination.

Solution.

140

Having a dataset with missing values removed, this is easy now:

```
f <- suppressWarnings( # yeah, yeah, yeah...</pre>
        # fitted probabilities numerically 0 or 1 occurred
    step(glm(model_full, data=edstats_subset, family=binomial("logit")),
        scope=model_empty, direction="backward")
)
## Start: AIC=50.83
## girls rule maths ~ IT.NET.USER.P2 + LO.PISA.MAT + LO.PISA.REA +
       LO.PISA.REA.FE + LO.PISA.REA.MA + LO.PISA.SCI + LO.PISA.SCI.FE +
##
##
       10.PTSA.SCT.MA + NY.GDP.MKTP.CD + NY.GDP.PCAP.CD + SP.POP.TOTI
##
                    Df Deviance AIC
##
                     1
                           26.8 48.8
## - LO.PISA.MAT
## - LO.PISA.SCI.MA 1
                           26.8 48.8
## - NY.GDP.PCAP.CD 1
                           26.9 48.9
## - LO.PISA.SCI
                           26.9 48.9
                     1
## - LO.PISA.SCI.FE
                     1
                           27.1 49.1
## - LO.PISA.REA.FE 1
                           27.4 49.4
## - LO.PISA.REA
                     1
                           27.5 49.5
## - LO.PISA.REA.MA 1
                           27.6 49.6
                           26.8 50.8
## <none>
## - IT.NET.USER.P2 1
                           29.3 51.3
## - NY.GDP.MKTP.CD 1
                           29.9 51.9
## - SP.POP.TOTL
                           31.7 53.7
                     1
##
## Step: AIC=48.84
## girls rule maths ~ IT.NET.USER.P2 + LO.PISA.REA + LO.PISA.REA.FE +
##
       LO.PISA.REA.MA + LO.PISA.SCI + LO.PISA.SCI.FE + LO.PISA.SCI.MA +
##
       NY.GDP.MKTP.CD + NY.GDP.PCAP.CD + SP.POP.TOTL
##
##
                    Df Deviance AIC
## - LO.PISA.SCI.MA
                           26.8 46.8
                    1
## - NY.GDP.PCAP.CD
                    1
                           26.9 46.9
## - LO.PISA.SCI
                           27.0 47.0
                     1
## - LO.PISA.SCI.FE
                           27.1 47.1
                     1
## - LO.PISA.REA.FE 1
                           27.4 47.4
## - LO.PISA.REA
                           27.5 47.5
                     1
## - LO.PISA.REA.MA 1
                           27.6 47.6
## <none>
                           26.8 48.8
## - IT.NET.USER.P2 1
                           29.3 49.3
## - NY.GDP.MKTP.CD 1
                           29.9 49.9
## - SP.POP.TOTL
                     1
                           31.7 51.7
##
## Step: AIC=46.84
```

```
LO.PISA.REA.MA + LO.PISA.SCI + LO.PISA.SCI.FE + NY.GDP.MKTP.CD +
##
       NY.GDP.PCAP.CD + SP.POP.TOTL
##
##
##
                    Df Deviance AIC
## - NY.GDP.PCAP.CD 1
                           26.9 44.9
## <none>
                           26.8 46.8
## - IT.NET.USER.P2 1
                           29.3 47.3
## - NY.GDP.MKTP.CD 1
                           29.9 47.9
## - LO.PISA.REA.FE 1
                           31.0 49.0
## - SP.POP.TOTL
                     1
                           31.8 49.8
## - LO.PISA.SCI
                     1
                         35.6 53.6
## - LO.PISA.SCI.FE 1 36.1 54.1
## - LO.PISA.REA
                  1
                         37.5 55.5
## - LO.PISA.REA.MA 1
                         50.9 68.9
##
## Step: AIC=44.87
## girls rule maths ~ IT.NET.USER.P2 + LO.PISA.REA + LO.PISA.REA.FE +
       LO.PISA.REA.MA + LO.PISA.SCI + LO.PISA.SCI.FE + NY.GDP.MKTP.CD +
##
##
       SP.POP.TOTL
##
##
                    Df Deviance AIC
                           26.9 44.9
## <none>
## - NY.GDP.MKTP.CD 1
                           30.5 46.5
                           31.0 47.0
## - IT.NET.USER.P2 1
                         31.1 47.1
## - LO.PISA.REA.FE 1
## - SP.POP.TOTL
                    1
                         33.0 49.0
## - LO.PISA.SCI
                         35.9 51.9
                     1
## - LO.PISA.SCI.FE 1
                           36.4 52.4
## - LO.PISA.REA
                     1
                           37.5 53.5
## - LO.PISA.REA.MA 1
                           50.9 66.9
The obtained model and its quality metrics:
print(f)
##
## Call:
         glm(formula = girls_rule_maths ~ IT.NET.USER.P2 + LO.PISA.REA +
##
       LO.PISA.REA.FE + LO.PISA.REA.MA + LO.PISA.SCI + LO.PISA.SCI.FE +
       NY.GDP.MKTP.CD + SP.POP.TOTL, family = binomial("logit"),
##
##
       data = edstats subset)
##
## Coefficients:
##
      (Intercept) IT.NET.USER.P2
                                      LO.PISA.REA LO.PISA.REA.FE
        -1.66e+01
                         1.61e-01
                                         1.85e+00
                                                        -8.00e-01
##
## LO.PISA.REA.MA
                     LO.PISA.SCI LO.PISA.SCI.FE NY.GDP.MKTP.CD
```

girls rule maths ~ IT.NET.USER.P2 + LO.PISA.REA + LO.PISA.REA.FE +

Classification with Trees and Linear Models

-1.03e+00 -1.35e+00 1.32e+00-4.95e-12 ## SP.POP.TOTL ## 6.20e-08 ## ## Degrees of Freedom: 80 Total (i.e. Null); 72 Residual ## Null Deviance: 103 ## Residual Deviance: 26.9 AIC: 44.9 Y pred <- as.numeric(predict(f, edstats subset, type="response")>0.5) get metrics(Y pred, edstats subset\$girls rule maths) ## Acc Prec Rec F ΤN FN FP TΡ 0.91358 ## 0.88462 0.85185 0.86792 51.00000 4.00000 3.00000 23.00000

Note that we got a better (lower) AIC than in the forward selection case, which means that backward elimination was better this time. On the other hand, we needed to suppress the fitted probabilities numerically 0 or 1 occurred warnings. The returned model is perhaps unstable as well and consists of too many variables.

4.5 Outro

4.5.1 Remarks

Other prominent classification algorithms:

- Naive Bayes and other probabilistic approaches,
- Support Vector Machines (SVMs) and other kernel methods,
- (Artificial) (Deep) Neural Networks.

Interestingly, in the next chapter we will note that the logistic regression model is a special case of a *feed-forward single layer neural network*.

We will also generalise the binary logistic regression to the case of a multiclass classification.

The state-of-the art classifiers called *Random Forests* and *XGBoost* (see also: *AdaBoost*) are based on decision trees. They tend to be more accurate but – at the same time – they fail to exhibit the decision trees' important feature: interpretability.

Trees can also be used for regression tasks, see R package rpart.

4.5.2 Further Reading

Recommended further reading: (James et al. 2017: Chapters 4 and 8)

Other: (Hastie et al. 2017: Chapters 4 and 7 as well as (*) Chapters 9, 10, 13, 15)

Shallow and Deep Neural Networks (*)

These lecture notes are distributed in the hope that they will be useful. Any bug reports are appreciated.

5.1 Introduction

5.1.1 Binary Logistic Regression: Recap

Let $\mathbf{X} \in \mathbb{R}^{n \times p}$ be an input matrix that consists of *n* points in a *p*-dimensional space.

$$\mathbf{X} = \begin{bmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,p} \\ x_{2,1} & x_{2,2} & \cdots & x_{2,p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n,1} & x_{n,2} & \cdots & x_{n,p} \end{bmatrix}$$

In other words, we have a database on n objects. Each object is described by means of p numerical features.

With each input $\mathbf{x}_{i,\cdot}$ we associate the desired output y_i which is a categorical label – hence we will be dealing with **classification** tasks again.

To recall, in **binary logistic regression** we model the probabilities that a given input belongs to either of the two classes:

$$\begin{aligned} \Pr(Y = 1 | \mathbf{X}, \boldsymbol{\beta}) &= \phi(\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p) \\ \Pr(Y = 0 | \mathbf{X}, \boldsymbol{\beta}) &= 1 - \phi(\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p) \end{aligned}$$

where $\phi(t) = \frac{1}{1+e^{-t}} = \frac{e^t}{1+e^t}$ is the logistic sigmoid function.

It holds:

$$\Pr(Y = 1 | \mathbf{X}, \boldsymbol{\beta}) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p)}},$$

$$\Pr(Y = 0 | \mathbf{X}, \boldsymbol{\beta}) = \frac{1}{1 + e^{+(\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p)}} = \frac{e^{-(\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p)}}{1 + e^{-(\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p)}}$$

The fitting of the model was performed by minimising the cross-entropy (log-loss):

$$\min_{\beta \in \mathbb{R}^{p+1}} -\frac{1}{n} \sum_{i=1}^{n} \left(y_i \log \hat{y}_i + (1-y_i) \log(1-\hat{y}_i) \right).$$

where $\hat{y}_i = \Pr(Y = 1 | \mathbf{x}_{i, \cdot}, \boldsymbol{\beta})$.

This is equivalent to:

$$\min_{\boldsymbol{\beta} \in \mathbb{R}^{p+1}} -\frac{1}{n} \sum_{i=1}^{n} \left(y_i \log \Pr(Y = 1 | \mathbf{x}_{i, \cdot}, \boldsymbol{\beta}) + (1 - y_i) \log \Pr(Y = 0 | \mathbf{x}_{i, \cdot}, \boldsymbol{\beta}) \right).$$

Note that for each *i*, either the left or the right term (in the bracketed expression) vanishes.

Hence, we may also write the above as:

$$\min_{\boldsymbol{\beta} \in \mathbb{R}^{p+1}} -\frac{1}{n} \sum_{i=1}^{n} \log \Pr(Y = y_i | \mathbf{x}_{i, \cdot}, \boldsymbol{\beta}).$$

In this chapter we will generalise the binary logistic regression model:

- First we will consider the case of many classes (multiclass classification). This will lead to the multinomial logistic regression model.
- Then we will note that the multinomial logistic regression is a special case of a feed-forward neural network.

5.1.2 Data

We will study the famous classic – the MNIST image classification dataset (Modified National Institute of Standards and Technology database), see http://yann.lecun.c om/exdb/mnist/

It consists of 28×28 pixel images of handwritten digits:

- train: 60,000 training images,
- t10k: 10,000 testing images.

A few image instances from each class are depicted in Figure 5.1.

```
## Loaded Tensorflow version 2.9.1
```

146

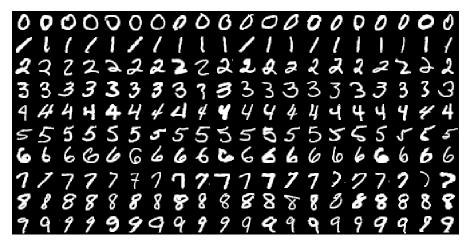


Figure 5.1: Example images in the MNIST database

There are 10 unique digits, so this is a multiclass classification problem.

Remark. The dataset is already "too easy" for testing of the state-of-the-art classifiers (see the notes below), but it's a great educational example.

Accessing MNIST via the keras package (which we will use throughout this chapter anyway) is easy:

```
library("keras")
mnist <- dataset_mnist()
X_train <- mnist$train$x
Y_train <- mnist$train$y
X_test <- mnist$test$x
Y_test <- mnist$test$y</pre>
```

X_train and X_test consist of 28×28 pixel images.

```
dim(X_train)
```

[1] 60000 28 28
dim(X_test)

[1] 10000 28 28

X_train and X_test are 3-dimensional arrays, think of them as vectors of 60000 and 10000 matrices of size 28×28, respectively.

These are grey-scale images, with 0 = black, ..., 255 = white:

range(X_train)

[1] 0 255

Numerically, it's more convenient to work with colour values converted to 0.0 = black, ..., 1.0 = white:

```
X_train <- X_train/255
X_test <- X_test/255
```

Y_train and Y_test are the corresponding integer labels:

```
length(Y_train)
## [1] 60000
length(Y_test)
## [1] 10000
table(Y_train) # label distribution in the training sample
## Y train
##
      0
           1
                2
                     3
                          4
                               5
                                    6
                                         7
                                               8
                                                    g
## 5923 6742 5958 6131 5842 5421 5918 6265 5851 5949
table(Y test) # label distribution in the test sample
## Y test
                2
##
      0
           1
                     3
                          4
                               5
                                     6
                                          7
                                               8
                                                    9
   980 1135 1032 1010 982 892 958 1028 974 1009
##
Here is how we can plot one of the digits (see Figure 5.2):
id <- 123 # image ID to show
image(z=t(X train[id,,]), col=grey.colors(256, 0, 1),
    axes=FALSE, asp=1, ylim=c(1, 0))
legend("topleft", bg="white",
    legend=sprintf("True label=%d", Y_train[id]))
```

5.2 Multinomial Logistic Regression

5.2.1 A Note on Data Representation

So... you may now be wondering "how do we construct an image classifier, this seems so complicated!".

For a computer, (almost) everything is just numbers.

Instead of playing with *n* matrices, each of size 28×28 , we may "flatten" the images so as to get *n* "long" vectors of length p = 784.

Shallow and Deep Neural Networks (*)

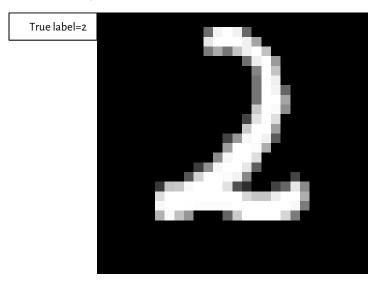


Figure 5.2: Example image from the MNIST dataset

```
X_train2 <- matrix(X_train, ncol=28*28)
X test2 <- matrix(X test, ncol=28*28)</pre>
```

The classifiers studied here do not take the "spatial" positioning of the pixels into account anyway. Hence, now we're back to our "comfort zone".

Remark. (*) See, however, convolutional neural networks (CNNs), e.g., in (Goodfellow et al. 2016).

5.2.2 Extending Logistic Regression

Let us generalise the binary logistic regression model to a 10-class one (or, more generally, *K*-class one).

This time we will be modelling ten probabilities, with $Pr(Y = k | \mathbf{X}, \mathbf{B})$ denoting the *confidence* that a given image **X** is in fact the *k*-th digit:

```
Pr(Y = 0|\mathbf{X}, \mathbf{B}) = \dots

Pr(Y = 1|\mathbf{X}, \mathbf{B}) = \dots

\vdots

Pr(Y = 9|\mathbf{X}, \mathbf{B}) = \dots
```

where **B** is the set of underlying model parameters (to be determined soon).

In binary logistic regression, the class probabilities are obtained by "cleverly norm-

alising" (by means of the logistic sigmoid) the outputs of a linear model (so that we obtain a value in [0, 1]).

$$\Pr(Y = 1 | \mathbf{X}, \boldsymbol{\beta}) = \phi(\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p)}}$$

In the multinomial case, we can use a separate linear model for each digit so that each $Pr(Y = k | \mathbf{X}, \mathbf{B}), k = 0, 1, ..., 9$, is given as a function of:

$$\beta_{0,k} + \beta_{1,k}X_1 + \dots + \beta_{p,k}X_p.$$

Therefore, instead of a parameter vector of length (p + 1), we will need a parameter matrix of size $(p + 1) \times 10$ representing the model's definition.

Side note. The upper case of β is *B*.

Then, these 10 numbers will have to be normalised so as to they are all greater than 0 and sum to 1.

To maintain the spirit of the original model, we can apply $e^{-(\beta_{0,k}+\beta_{1,k}X_1+\cdots+\beta_{p,k}X_p)}$ to get a positive value, because the co-domain of the exponential function $t \mapsto e^t$ is $(0, \infty)$.

Then, dividing each output by the sum of all the outputs will guarantee that the total sum equals 1.

This leads to:

$$\begin{split} \Pr(Y = 0 | \mathbf{X}, \mathbf{B}) &= \frac{e^{-(\beta_{0,0} + \beta_{1,0}X_1 + \dots + \beta_{p,0}X_p)}}{\sum_{k=0}^{9} e^{-(\beta_{0,k} + \beta_{1,k}X_1 + \dots + \beta_{p,k}X_p)}}, \\ \Pr(Y = 1 | \mathbf{X}, \mathbf{B}) &= \frac{e^{-(\beta_{0,1} + \beta_{1,1}X_1 + \dots + \beta_{p,k}X_p)}}{\sum_{k=0}^{9} e^{-(\beta_{0,k} + \beta_{1,k}X_1 + \dots + \beta_{p,k}X_p)}}, \\ &\vdots \\ \Pr(Y = 9 | \mathbf{X}, \mathbf{B}) &= \frac{e^{-(\beta_{0,9} + \beta_{1,9}X_1 + \dots + \beta_{p,9}X_p)}}{\sum_{k=0}^{9} e^{-(\beta_{0,k} + \beta_{1,k}X_1 + \dots + \beta_{p,k}X_p)}}. \end{split}$$

This reduces to the binary logistic regression if we consider only the classes 0 and 1 and fix $\beta_{0,0} = \beta_{1,0} = \cdots = \beta_{p,0} = 0$ (as $e^0 = 1$).

5.2.3 Softmax Function

The above transformation (that maps 10 arbitrary real numbers to positive ones that sum to 1) is called the **softmax** function (or *softargmax*).

```
softmax <- function(T) {</pre>
   T2 <- exp(T) # ignore the minus sign above
   T2/sum(T2)
}
round(rbind(
   softmax(c(0, 0, 10, 0, 0, 0, 0, 0, 0, 0)),
   softmax(c(0, 0, 10, 0, 0, 0, 10, 0, 0, 0)),
   softmax(c(0, 0, 10, 0, 0, 0, 9, 0, 0, 0)),
   softmax(c(0, 0, 10, 0, 0, 0, 9, 0, 0, 8))), 2)
##
       [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
## [1,]
              0 1.00
                       0
                           0
                               0 0.00
                                         0
                                             0 0.00
         0
                               0 0.50
## [2,]
         0
             0 0.50
                       0
                           0
                                        0
                                            0 0.00
## [3,]
         0 0 0.73
                           0
                               0 0.27 0 0 0.00
                       0
         0 0 0.67
                           0 0 0.24 0 0 0.09
## [4,]
                       0
```

5.2.4 One-Hot Encoding and Decoding

The ten class-belongingness-degrees can be decoded to obtain a single label by simply choosing the class that is assigned the highest probability.

```
y_pred <- softmax(c(0, 0, 10, 0, 0, 0, 0, 0, 0, 8))
round(y_pred, 2) # probabilities of Y=0, 1, 2, ..., 9</pre>
```

[1] 0.00 0.00 0.67 0.00 0.00 0.00 0.24 0.00 0.00 0.09
which.max(y_pred)-1 # 1..10 -> 0..9

[1] 2

Remark. which.max(y) returns an index k such that $y[k] == \max(y)$ (recall that in R the first element in a vector is at index 1). Mathematically, we denote this operation as arg $\max_{k=1,...,K} y_k$.

To make processing the outputs of a logistic regression model more convenient, we will apply the so-called **one-hot-encoding** of the labels.

Here, each label will be represented as a 0-1 vector of 10 probabilities – with probability 1 corresponding to the true class only.

For instance:

```
y <- 2 # true class (this is just an example)
y2 <- rep(0, 10)
y2[y+1] <- 1 # +1 because we need 0..9 -> 1..10
y2 # one-hot-encoded y
```

[1] 0 0 1 0 0 0 0 0 0 0

To one-hot encode *all* the reference outputs in R, we start with a matrix of size $n \times 10$ populated with "0"s:

```
Y_train2 <- matrix(0, nrow=length(Y_train), ncol=10)</pre>
```

Next, for every *i*, we insert a "1" in the *i*-th row and the (Y_train[*i*]+1)-th column:

```
# Note the "+1" 0..9 -> 1..10
Y_train2[cbind(1:length(Y_train), Y_train+1)] <- 1</pre>
```

Remark. In R, indexing a matrix A with a 2-column matrix B, i.e., A[B], allows for an easy access to A[B[1,1], B[1,2]], A[B[2,1], B[2,2]], A[B[3,1], B[3,2]], ...

Sanity check:

head(Y_train) ## [1] 5 0 4 1 9 2 head(Y_train2)

##		[,1]	[,2]	[,3]	[,4]	[,5]	[,6]	[,7]	[,8]	[,9]	[,10]
## [1,]	0	0	0	0	0	1	0	0	0	Θ
## [2,]	1	0	0	0	0	0	0	0	0	Θ
## [3,]	0	0	0	0	1	0	0	0	0	Θ
## [4,]	Θ	1	Θ	0	0	0	0	Θ	0	Θ
## [5,]	0	0	0	0	0	0	0	0	0	1
## [6,]	Θ	Θ	1	0	0	0	0	Θ	0	Θ

Let us generalise the above idea and write a function that can one-hot-encode any vector of integer labels:

```
one_hot_encode <- function(Y) {
   stopifnot(is.numeric(Y))
   c1 <- min(Y) # first class label
   cK <- max(Y) # last class label
   K <- cK-c1+1 # number of classes
   Y2 <- matrix(0, nrow=length(Y), ncol=K)
   Y2[cbind(1:length(Y), Y-c1+1)] <- 1
   Y2
}</pre>
```

Encode Y_train and Y_test:

```
Y_train2 <- one_hot_encode(Y_train)
Y_test2 <- one_hot_encode(Y_test)</pre>
```

152

5.2.5 Cross-entropy Revisited

Our classifier will be outputting K = 10 probabilities.

The true class labels are not one-hot-encoded so that they are represented as vectors of K - 1 zeros and a single one.

How to measure the "agreement" between these two?

In essence, we will be comparing the probability vectors as generated by a classifier, $\hat{Y}\colon$

round(y_pred, 2)

[1] 0.00 0.00 0.67 0.00 0.00 0.00 0.24 0.00 0.00 0.09

with the one-hot-encoded true probabilities, Y:

у2

[1] 0 0 1 0 0 0 0 0 0 0

It turns out that one of the definitions of cross-entropy introduced above already handles the case of multiclass classification:

$$E(\mathbf{B}) = -\frac{1}{n} \sum_{i=1}^{n} \log \Pr(Y = y_i | \mathbf{x}_{i, \cdot}, \mathbf{B}).$$

The smaller the probability corresponding to the ground-truth class outputted by the classifier, the higher the penalty, see Figure 5.3.

To sum up, we will be solving the optimisation problem:

$$\min_{\mathbf{B}\in\mathbb{R}^{(p+1)\times 10}} -\frac{1}{n}\sum_{i=1}^{n}\log\Pr(Y=y_i|\mathbf{x}_{i,\cdot},\mathbf{B}).$$

This has no analytical solution, but can be solved using iterative methods (see the chapter on optimisation).

(*) Side note: A single term in the above formula,

$$\log \Pr(Y = y_i | \mathbf{x}_{i,\cdot}, \mathbf{B})$$

given:

• y_pred – a vector of 10 probabilities generated by the model:

$$\left[\Pr(Y=0|\mathbf{x}_{i,\cdot},\mathbf{B}) \ \Pr(Y=1|\mathbf{x}_{i,\cdot},\mathbf{B}) \ \cdots \ \Pr(Y=9|\mathbf{x}_{i,\cdot},\mathbf{B})\right]$$

• y2 – a one-hot-encoded version of the true label, y_i , of the form:

$$[00 \cdots 010 \cdots 0]$$

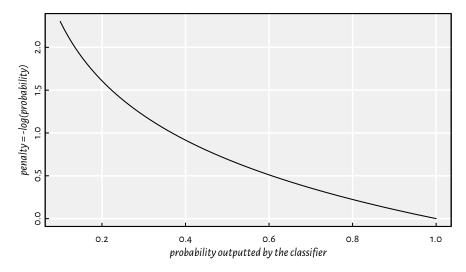


Figure 5.3: The less the classifier is confident about the prediction of the actually true label, the greater the penalty

```
can be computed as:
sum(y2*log(y pred))
```

[1] -0.40782

5.2.6 Problem Formulation in Matrix Form (**)

The definition of a multinomial logistic regression model for a multiclass classification task involving classes $\{1, 2, ..., K\}$ is slightly bloated.

Assuming that $\mathbf{X} \in \mathbb{R}^{n \times p}$ is the input matrix, to compute the *K* predicted probabilities for the *i*-th input,

$$\left[\hat{y}_{i,1}\,\hat{y}_{i,2}\,\cdots\,\hat{y}_{i,K}\right],\,$$

given a parameter matrix $\mathbf{B}^{(p+1) \times K}$, we apply:

$$\begin{split} \hat{y}_{i,1} &= \Pr(Y = 1 | \mathbf{x}_{i,\cdot}, \mathbf{B}) &= \frac{e^{\beta_{0,1} + \beta_{1,1} x_{i,1} + \dots + \beta_{p,1} x_{i,p}}}{\sum_{k=1}^{K} e^{\beta_{0,k} + \beta_{1,k} x_{i,1} + \dots + \beta_{p,k} x_{i,p}}}, \\ &\vdots \\ \hat{y}_{i,K} &= \Pr(Y = K | \mathbf{x}_{i,\cdot}, \mathbf{B}) &= \frac{e^{\beta_{0,K} + \beta_{1,K} x_{i,1} + \dots + \beta_{p,K} x_{i,p}}}{\sum_{k=1}^{K} e^{\beta_{0,k} + \beta_{1,k} x_{i,1} + \dots + \beta_{p,k} x_{i,p}}}. \end{split}$$

Remark. We have dropped the minus sign in the exponentiation for brevity of notation. Note that we can always map $b'_{i,k} = -b_{i,k}$.

It turns out we can make use of matrix notation to tidy the above formulas.

Denote the linear combinations prior to computing the softmax function with:

$$\begin{array}{rcl} t_{i,1} & = & \beta_{0,1} + \beta_{1,1} x_{i,1} + \dots + \beta_{p,1} x_{i,p}, \\ & \vdots \\ t_{i,K} & = & \beta_{0,K} + \beta_{1,K} x_{i,1} + \dots + \beta_{p,K} x_{i,p}. \end{array}$$

We have:

- $x_{i,i}$ the *i*-th observation, the *j*-th feature;
- $\hat{y}_{i,k}$ the *i*-th observation, the *k*-th class probability;
- $\beta_{i,k}$ the coefficient for the *j*-th feature when computing the *k*-th class.

Note that by augmenting $\dot{\mathbf{X}} = [1 \mathbf{X}] \in \mathbb{R}^{n \times (p+1)}$ by adding a column of 1s, i.e., where $\dot{x}_{i,0} = 1$ and $\dot{x}_{i,j} = x_{i,j}$ for all $j \ge 1$ and all i, we can write the above as:

$$\begin{aligned} t_{i,1} &= \sum_{j=0}^{p} \dot{x}_{i,j} \beta_{j,1} &= \dot{\mathbf{x}}_{i,\cdot} \boldsymbol{\beta}_{\cdot,1}, \\ &\vdots \\ t_{i,K} &= \sum_{j=0}^{p} \dot{x}_{i,j} \beta_{j,K} &= \dot{\mathbf{x}}_{i,\cdot} \boldsymbol{\beta}_{\cdot,K}. \end{aligned}$$

We can get the *K* linear combinations all at once in the form of a row vector by writing:

$$\begin{bmatrix} t_{i,1} t_{i,2} \cdots t_{i,K} \end{bmatrix} = \mathbf{x}_{i,\cdot} \mathbf{B}$$

Moreover, we can do that for all the *n* inputs by writing:

$$\mathbf{T} = \dot{\mathbf{X}} \mathbf{B}.$$

Yes yes yes! This is a single matrix multiplication, we have $\mathbf{T} \in \mathbb{R}^{n \times K}$.

To obtain $\hat{\mathbf{Y}}$, we have to apply the softmax function on every row of **T**:

$$\hat{\mathbf{Y}} = \operatorname{softmax}\left(\dot{\mathbf{X}}\mathbf{B}\right).$$

That's it. Take some time to appreciate the elegance of this notation.

Methods for minimising cross-entropy expressed in matrix form will be discussed in the next chapter.

5.3 Artificial Neural Networks

5.3.1 Artificial Neuron

A neuron can be thought of as a mathematical function, see Figure 5.4, which has its specific inputs and an output.

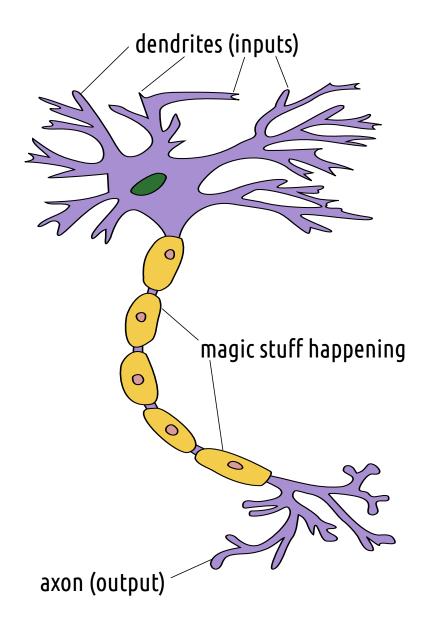


Figure 5.4: Neuron as a mathematical (black box) function; image based on: https: //en.wikipedia.org/wiki/File:Neuron3.png by Egm4313.s12 at English Wikipedia, licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license

The Linear Threshold Unit (McCulloch and Pitts, 1940s), the Perceptron (Rosenblatt, 1958) and the Adaptive Linear Neuron (Widrow and Hoff, 1960) were amongst the first models of an artificial neuron that could be used for the purpose of pattern recognition, see Figure 5.5. They can be thought of as processing units that compute a weighted sum of the inputs, which is then transformed by means of a nonlinear "activation" function.

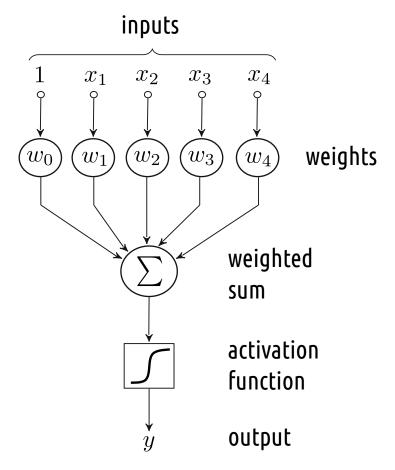


Figure 5.5: A simple model of an artificial neuron

5.3.2 Logistic Regression as a Neural Network

The above resembles our binary logistic regression model, where we determine a linear combination (a weighted sum) of p inputs and then transform it using the logistic sigmoid "activation" function. We can easily depict it in the Figure 5.4-style, see Figure 5.6.

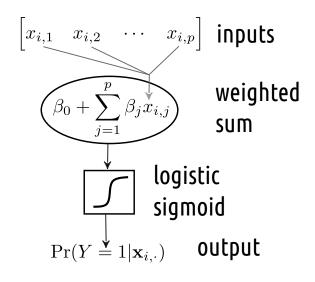


Figure 5.6: Binary logistic regression

On the other hand, a multiclass logistic regression can be depicted as in Figure 5.7. In fact, we can consider it as an instance of a:

- single layer (there is only one processing step that consists of 10 units),
- densely connected (all the inputs are connected to all the components below),
- **feed-forward** (the outputs are generated by processing the inputs from "top" to "bottom", there are no loops in the graph etc.)

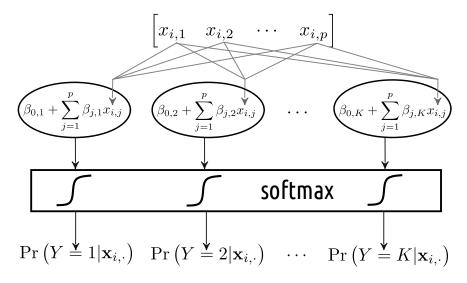
artificial **neural network** that uses the softmax as the activation function.

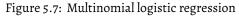
5.3.3 Example in R

To train such a neural network (i.e., fit a multinomial logistic regression model), we will use the keras package, a wrapper around the (GPU-enabled) TensorFlow library.

The training of the model takes a few minutes (for more complex models and bigger datasets – it could take hours/days). Thus, it is wise to store the computed model (the **B** coefficient matrix and the accompanying keras's auxiliary data) for further reference:

```
file_name <- "datasets/mnist_keras_model1.h5"
if (!file.exists(file_name)) { # File doesn't exist -> compute
    set.seed(123)
    # Start with an empty model
    model1 <- keras_model_sequential()
    # Add a single layer with 10 units and softmax activation
    layer_dense(model1, units=10, activation="softmax")</pre>
```





Let's make predictions over the test set:

Then, we can one-hot-decode the output probabilities:

Y_pred <- apply(Y_pred2, 1, which.max)-1 # 1..10 -> 0..9 head(Y_pred, 20) # predicted outputs

[1] 7 2 1 0 4 1 4 9 6 9 0 6 9 0 1 5 9 7 3 4

head(Y_test, 20) # true outputs

[1] 7 2 1 0 4 1 4 9 5 9 0 6 9 0 1 5 9 7 3 4

Accuracy on the test set:

mean(Y_test == Y_pred)

[1] 0.9169

Performance metrics for each digit separately (see also Figure 5.8):

_								
i	Acc	Prec	Rec	F	TN	FN	FP	TP
0	0.9924	0.94664	0.97755	0.96185	8966	22	54	958
1	0.9923	0.95920	0.97357	0.96633	8818	30	47	1105
2	0.9803	0.92214	0.88372	0.90252	8891	120	77	912
3	0.9802	0.89417	0.91188	0.90294	8881	89	109	921
4	0.9833	0.90148	0.93177	0.91637	8918	67	100	915
5	0.9793	0.91415	0.84753	0.87958	9037	136	71	756
6	0.9885	0.93142	0.94990	0.94057	8975	48	67	910
7	0.9834	0.92843	0.90856	0.91839	8900	94	72	934
8	0.9754	0.86473	0.88604	0.87525	8891	111	135	863
9	0.9787	0.90040	0.88702	0.89366	8892	114	99	895

Note how misleading the individual accuracies are! Averaging over the above table's columns gives:

Acc Prec Rec F ## 0.98338 0.91628 0.91575 0.91575

5.4 Deep Neural Networks

5.4.1 Introduction

In a brain, a neuron's output is an input a bunch of other neurons. We could try aligning neurons into many interconnected layers. This leads to a structure like the one in Figure 5.9.

160

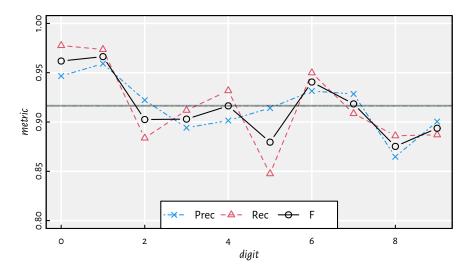


Figure 5.8: Performance metrics for multinomial logistic regression on MNIST

5.4.2 Activation Functions

Each layer's outputs should be transformed by some non-linear activation function. Otherwise, we'd end up with linear combinations of linear combinations, which are linear combinations themselves.

Example activation functions that can be used in hidden (inner) layers:

• relu – The rectified linear unit:

$$\psi(t) = \max(t, 0),$$

• sigmoid – The logistic sigmoid:

$$\phi(t) = \frac{1}{1 + \exp(-t)},$$

• tanh - The hyperbolic function:

$$\tanh(t) = \frac{\exp(t) - \exp(-t)}{\exp(t) + \exp(-t)}$$

There is not much difference between them, but some might be more convenient to handle numerically than the others, depending on the implementation.

5.4.3 Example in R - 2 Layers

Let's construct a 2-layer Neural Network of the type 784-800-10:

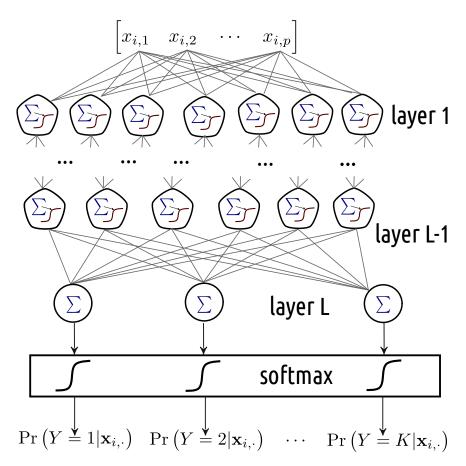


Figure 5.9: A multi-layer neural network

```
file_name <- "datasets/mnist_keras_model2.h5"
if (!file.exists(file_name)) {
   set.seed(123)
   model2 <- keras_model_sequential()
   layer_dense(model2, units=800, activation="relu")
   layer_dense(model2, units=10, activation="softmax")
   compile(model2, optimizer="sgd",
        loss="categorical_crossentropy")
   fit(model2, X_train2, Y_train2, epochs=10)
   save_model_hdf5(model2, file_name)
} else {
   model2 <- load_model_hdf5(file_name)
}</pre>
```

```
Y_pred2 <- predict(model2, X_test2)
Y_pred <- apply(Y_pred2, 1, which.max)-1 # 1..10 -> 0..9
mean(Y_test == Y_pred) # accuracy on the test set
```

[1] 0.9583

Performance metrics for each digit separately, see also Figure 5.10:

i	Acc	Prec	Rec	F	TN	FN	FP	TP
0	0.9948	0.96215	0.98571	0.97379	8982	14	38	966
1	0.9962	0.98156	0.98502	0.98329	8844	17	21	1118
2	0.9911	0.96000	0.95349	0.95673	8927	48	41	984
3	0.9898	0.94773	0.95149	0.94960	8937	49	53	961
4	0.9919	0.95829	0.95927	0.95878	8977	40	41	942
5	0.9911	0.95470	0.94507	0.94986	9068	49	40	843
6	0.9920	0.94888	0.96868	0.95868	8992	30	50	928
7	0.9906	0.95517	0.95331	0.95424	8926	48	46	980
8	0.9899	0.95421	0.94148	0.94780	8982	57	44	917
9	0.9892	0.95643	0.93558	0.94589	8948	65	43	944

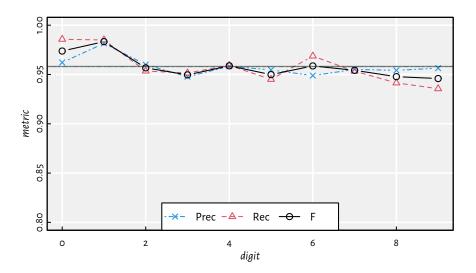


Figure 5.10: Performance metrics for a 2-layer net 784-800-10 [relu] on MNIST

5.4.4 Example in R - 6 Layers

How about a 6-layer *Deep* Neural Network like 784-2500-2000-1500-1000-500-10? Here you are:

```
file_name <- "datasets/mnist_keras_model3.h5"</pre>
if (!file.exists(file_name)) {
    set.seed(123)
    model3 <- keras_model_sequential()</pre>
    layer_dense(model3, units=2500, activation="relu")
    layer_dense(model3, units=2000, activation="relu")
    layer_dense(model3, units=1500, activation="relu")
    layer dense(model3, units=1000, activation="relu")
    layer dense(model3, units=500, activation="relu")
    layer dense(model3, units=10, activation="softmax")
    compile(model3, optimizer="sgd",
            loss="categorical_crossentropy")
    fit(model3, X train2, Y train2, epochs=10)
    save model hdf5(model3, file name)
} else {
    model3 <- load_model_hdf5(file_name)</pre>
}
Y_pred2 <- predict(model3, X_test2)</pre>
Y_pred <- apply(Y_pred2, 1, which.max)-1 # 1..10 -> 0..9
mean(Y_test == Y_pred) # accuracy on the test set
```

[1] 0.9769

Performance metrics for each digit separately, see also Figure 5.11.

i	Acc	Prec	Rec	F	TN	FN	FP	TP
0	0.9964	0.97295	0.99082	0.98180	8993	9	27	971
1	0.9980	0.99206	0.99031	0.99118	8856	11	9	1124
2	0.9948	0.99000	0.95930	0.97441	8958	42	10	990
3	0.9948	0.97239	0.97624	0.97431	8962	24	28	986
4	0.9951	0.97846	0.97149	0.97496	8997	28	21	954
5	0.9963	0.97553	0.98318	0.97934	9086	15	22	877
6	0.9965	0.98224	0.98121	0.98172	9025	18	17	940
7	0.9941	0.95837	0.98541	0.97170	8928	15	44	1013
8	0.9939	0.96534	0.97228	0.96880	8992	27	34	947
9	0.9939	0.98073	0.95837	0.96942	8972	42	19	967

Exercise 5.1 Test the performance of different neural network architectures (different number of layers, different number of neurons in each layer etc.). Yes, it's more art than science! Many tried to come up with various "rules of thumb", see, for example, the comp.ai.neural-nets FAQ (Sarle et al. 2002) at http://www.faqs.org/faqs/ai-faq/neural-nets/part3/preamble.ht ml, but what works well in one problem might not be generalisable to another one.

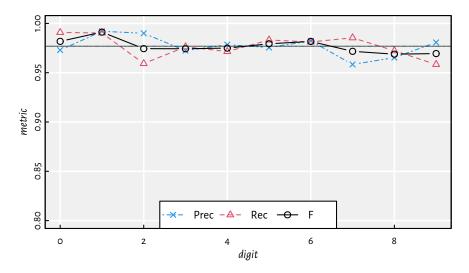


Figure 5.11: Performance metrics for a 6-layer net 784-2500-2000-1500-1000-500-10 [relu] on MNIST

5.5 Preprocessing of Data

5.5.1 Introduction

Do not underestimate the power of appropriate data preprocessing — deep neural networks are not a universal replacement for a data engineer's hard work!

On top of that, they are not interpretable – these are merely black-boxes.

Among the typical transformations of the input images we can find:

- normalisation of colours (setting brightness, stretching contrast, etc.),
- repositioning of the image (centring),
- deskewing (see below),
- denoising (e.g., by blurring).

Another frequently applied technique concerns an expansion of the training data — we can add "artificially contaminated" images to the training set (e.g., slightly rotated digits) so as to be more ready to whatever will be provided in the test test.

5.5.2 Image Deskewing

Deskewing of images ("straightening" of the digits) is amongst the most typical transformations that can be applied on MNIST.

Unfortunately, we don't have (yet) the necessary mathematical background to discuss this operation in very detail.

Luckily, we can apply it on each image anyway.

See the GitHub repository at https://github.com/gagolews/Playground.R for an example notebook and the deskew.R script.

```
# See https://github.com/gagolews/Playground.R
source("~/R/Playground.R/deskew.R")
# new_image <- deskew(old_image)</pre>
```

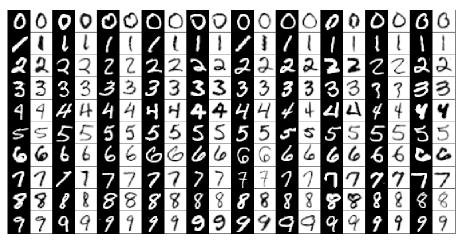


Figure 5.12: Deskewing of the MNIST digits

Let's take a look at Figure 5.12. In each pair, the left image (black background) is the original one, and the right image (palette inverted for purely dramatic effects) is its deskewed version.

Below we deskew each image in the training as well as in the test sample. This also takes a long time, so let's store the resulting objects for further reference:

```
file_name <- "datasets/mnist_deskewed_train.rds"
if (!file.exists(file_name)) {
    Z_train <- X_train
    for (i in 1:dim(Z_train)[1]) {
        Z_train[i,,] <- deskew(Z_train[i,,])
    }
    Z_train2 <- matrix(Z_train, ncol=28*28)
    saveRDS(Z_train2, file_name)
} else {
    Z_train2 <- readRDS(file_name)
}</pre>
```

```
file_name <- "datasets/mnist_deskewed_test.rds"
if (!file.exists(file_name)) {
    Z_test <- X_test
    for (i in 1:dim(Z_test)[1]) {
        Z_test[i,,] <- deskew(Z_test[i,,])
    }
    Z_test2 <- matrix(Z_test, ncol=28*28)
    saveRDS(Z_test2, file_name)
} else {
    Z_test2 <- readRDS(file_name)
}</pre>
```

Remark. RDS in a compressed file format used by R for object serialisation (quickly storing its verbatim copies so that they can be reloaded at any time).

Multinomial logistic regression model (1-layer NN):

```
file_name <- "datasets/mnist_keras_model1d.h5"
if (!file.exists(file_name)) {
   set.seed(123)
   model1d <- keras_model_sequential()
   layer_dense(model1d, units=10, activation="softmax")
   compile(model1d, optimizer="sgd",
        loss="categorical_crossentropy")
   fit(model1d, Z_train2, Y_train2, epochs=10)
   save_model_hdf5(model1d, file_name)
} else {
    model1d <- load_model_hdf5(file_name)
}
Y_pred2 <- predict(model1d, Z_test2)
Y_pred <- apply(Y_pred2, 1, which.max)-1 # 1..10 -> 0..9
mean(Y_test == Y_pred) # accuracy on the test set
```

[1] 0.9488

Performance metrics for each digit separately, see also Figure 5.13.

i	Acc	Prec	Rec	F	TN	FN	FP	TP
0	0.9939	0.95450	0.98469	0.96936	8974	15	46	965
1	0.9959	0.98236	0.98150	0.98193	8845	21	20	1114
2	0.9878	0.95409	0.92636	0.94002	8922	76	46	956
3	0.9904	0.95069	0.95446	0.95257	8940	46	50	964
4	0.9888	0.94118	0.94501	0.94309	8960	54	58	928
5	0.9905	0.94426	0.94955	0.94690	9058	45	50	847
6	0.9905	0.95565	0.94468	0.95013	9000	53	42	905

Lightweight Machine Learning Classics with R

i	Acc	Prec	Rec	F	TN	FN	FP	TP
7	0.9892	0.96000	0.93385	0.94675	8932	68	40	960
8	0.9855	0.91162	0.94251	0.92680	8937	56	89	918
9	0.9851	0.92914	0.92270	0.92591	8920	78	71	931

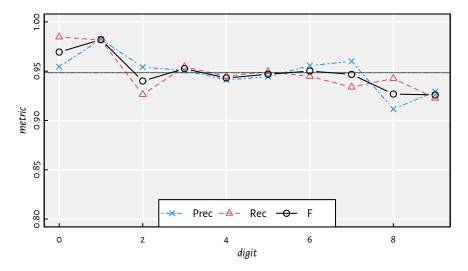


Figure 5.13: Performance of Multinomial Logistic Regression on the deskewed MNIST

5.5.3 Summary of All the Models Considered

Let's summarise the quality of all the considered classifiers. Figure 5.14 gives the F-measures, for each digit separately.

Note that the applied preprocessing of data increased the prediction accuracy.

The same information can also be included on a heat map which is depicted in Figure 5.15 (see the image() function in R).

5.6 Outro

5.6.1 Remarks

We have discussed a multinomial logistic regression model as a generalisation of the binary one.

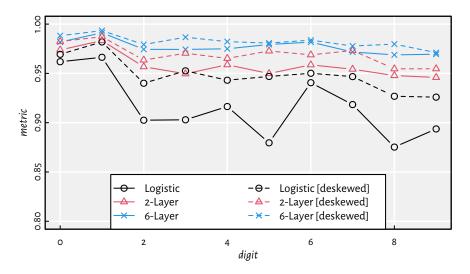


Figure 5.14: Summary of F-measures for each classified digit and every method

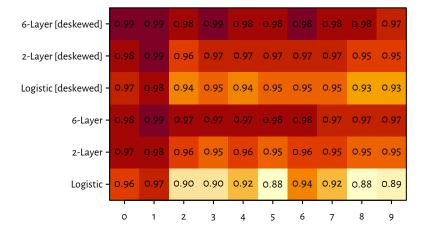


Figure 5.15: A heat map of F-measures for each classified digit and each method

This in turn is a special case of feed-forward neural networks.

There's a lot of hype (again...) for deep neural networks in many applications, including vision, self-driving cars, natural language processing, speech recognition etc.

Many different architectures of neural networks and types of units are being considered in theory and in practice, e.g.:

- convolutional neural networks apply a series of signal (e.g., image) transformations in first layers, they might actually "discover" deskewing automatically etc.;
- recurrent neural networks can imitate long/short-term memory that can be used for speech synthesis and time series prediction.

Main drawbacks of deep neural networks:

- learning is very slow, especially with very deep architectures (days, weeks);
- models are not explainable (black boxes) and hard to debug;
- finding good architectures is more art than science (maybe: more of a craftsmanship even);
- sometimes using deep neural network is just an excuse for being too lazy to do proper data cleansing and pre-processing.

There are many issues and challenges that are tackled in more advanced AI/ML courses and books, such as (Goodfellow et al. 2016).

5.6.2 Beyond MNIST

The MNIST dataset is a classic, although its use in deep learning research is nowadays discouraged – the dataset is not considered challenging anymore – state of the art classifiers can reach 99.8% accuracy.

See Zalando's Fashion-MNIST (by Kashif Rasul & Han Xiao) at https://github.com /zalandoresearch/fashion-mnist for a modern replacement.

Alternatively, take a look at CIFAR-10 and CIFAR-100 (https://www.cs.toronto.edu/~kriz/cifar.html) by A. Krizhevsky et al. or at ImageNet (http://image-net.org/index) for an even greater challenge.

5.6.3 Further Reading

Recommended further reading: (James et al. 2017: Chapter 11), (Sarle et al. 2002) and (Goodfellow et al. 2016)

See also the keras package tutorials available at: https://cran.r-project.org/web/pa ckages/keras/index.html and https://keras.rstudio.com.

Continuous Optimisation with Iterative Algorithms (*)

These lecture notes are distributed in the hope that they will be useful. Any bug reports are appreciated.

6.1 Introduction

6.1.1 Optimisation Problems

Mathematical optimisation (a.k.a. mathematical programming) deals with the study of algorithms to solve problems related to selecting the *best* element amongst the set of available alternatives.

Most frequently "best" is expressed in terms of an *error* or *goodness offit* measure:

 $f:\mathbb{D}\to\mathbb{R}$

called an **objective function**, where $\mathbb D$ is the **search space** (problem domain, feasible set).

An **optimisation task** deals with finding an element $x \in \mathbb{D}$ amongst the set of possible candidate solutions, that minimises or maximises f:

$$\min_{\mathbf{x}\in\mathbb{D}}f(\mathbf{x}) \quad \text{or} \quad \max_{\mathbf{x}\in\mathbb{D}}f(\mathbf{x}),$$

In this chapter we will deal with **unconstrained continuous optimisation**, i.e., we will assume the search space is $\mathbb{D} = \mathbb{R}^p$ for some p – we'll be optimising over p real-valued parameters.

6.1.2 Example Optimisation Problems in Machine Learning

In multiple linear regression we were minimising the sum of squared residuals

$$\min_{\boldsymbol{\beta}\in\mathbb{R}^p}\sum_{i=1}^n \left(\beta_0+\beta_1 x_{i,1}+\cdots+\beta_p x_{i,p}-y_i\right)^2.$$

In **binary logistic regression** we were minimising the cross-entropy:

$$\min_{\beta \in \mathbb{R}^p} -\frac{1}{n} \sum_{i=1}^n \left(\begin{array}{c} y_i \log\left(\frac{1}{1+e^{-(\beta_0+\beta_1 x_{i,1}+\dots+\beta_p x_{i,p}})}\right) \\ +(1-y_i) \log\left(\frac{e^{-(\beta_0+\beta_1 x_{i,1}+\dots+\beta_p x_{i,p})}}{1+e^{-(\beta_0+\beta_1 x_{i,1}+\dots+\beta_p x_{i,p})}}\right) \end{array} \right).$$

6.1.3 Types of Minima and Maxima

Note that minimising f is the same as maximising $\bar{f} = -f$.

In other words, $\min_{\mathbf{x}\in\mathbb{D}} f(\mathbf{x})$ and $\max_{\mathbf{x}\in\mathbb{D}} -f(\mathbf{x})$ represent the same optimisation problems (and hence have identical solutions).

Definition. A minimum of f is a point \mathbf{x}^* such that $f(\mathbf{x}^*) \leq f(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{D}$. On the other hand, a **maximum** of f is a point \mathbf{x}^* such that $f(\mathbf{x}^*) \geq f(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{D}$.

Assuming that $\mathbb{D} = \mathbb{R}$, Figure 6.1 shows an example objective function, $f : \mathbb{D} \to \mathbb{R}$, that has a minimum at $x^* = 1$ with $f(x^*) = -2$.

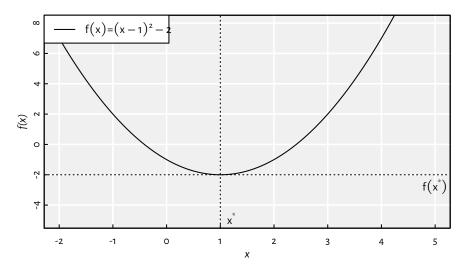


Figure 6.1: A function with the global minimum at $x^* = 1$

Remark. We can denote these two facts as follows:

Continuous Optimisation with Iterative Algorithms (*)

- $(\min_{x \in \mathbb{R}} f(x)) = -2$ (value of *f* at the minimum is -2),
- $(\arg \min_{x \in \mathbb{R}} f(x)) = 1$ (location of the minimum, i.e., *argument minimum*, is 1).

By definition, a minimum/maximum *might not necessarily be unique*. This depends on a problem.

Assuming that $\mathbb{D} = \mathbb{R}$, Figure 6.2 gives an example objective function, $f : \mathbb{D} \to \mathbb{R}$, that has multiple minima; every $x^* \in [1 - \sqrt{2}, 1 + \sqrt{2}]$ yields $f(x^*) = 0$.

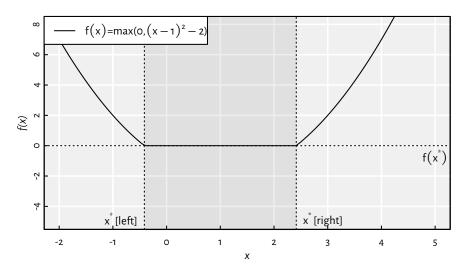


Figure 6.2: A function that has multiple minima

Remark. If this was the case of some machine learning problem, it would mean that we could have many equally well-performing models, and hence many equivalent explanations of the same phenomenon.

Moreover, it may happen that a function has *multiple local minima*, compare Figure 6.3.

Definition. We say that *f* has a **local minimum** at $\mathbf{x}^+ \in \mathbb{D}$, if for some neighbourhood $B(\mathbf{x}^+)$ of \mathbf{x}^+ it holds $f(\mathbf{x}^+) \leq f(\mathbf{x})$ for each $\mathbf{x} \in B(\mathbf{x}^+)$.

If $\mathbb{D} = \mathbb{R}$, by neighbourhood B(x) of x we mean an open interval centred at x of width 2r for some small r > 0, i.e., (x - r, x + r)

Definition. (*) If $\mathbb{D} = \mathbb{R}^p$ (for any $p \ge 1$), by neighbourhood $B(\mathbf{x})$ of \mathbf{x} we mean an *open ball* centred at \mathbf{x}^+ of some small radius r > 0, i.e., $\{\mathbf{y} : \|\mathbf{x} - \mathbf{y}\| < r\}$ (read: the set of all the points with Euclidean distances to \mathbf{x} less than r).

To avoid ambiguity, the "true" minimum (a point \mathbf{x}^* such that $f(\mathbf{x}^*) \leq f(x)$ for all $\mathbf{x} \in \mathbb{D}$) is sometimes also referred to as a **global** minimum.

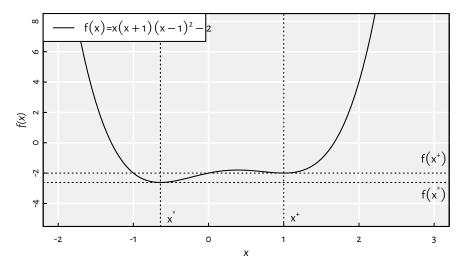


Figure 6.3: A function with two local minima

Remark. Of course, the global minimum is also a function's local minimum.

The existence of local minima is problematic as most of the optimisation methods might get stuck there and fail to return the global one.

Moreover, we cannot often be sure if the result returned by an algorithm is indeed a global minimum. Maybe there exists a better solution that hasn't been considered yet? Or maybe the function is very noisy (see Figure 6.4)?

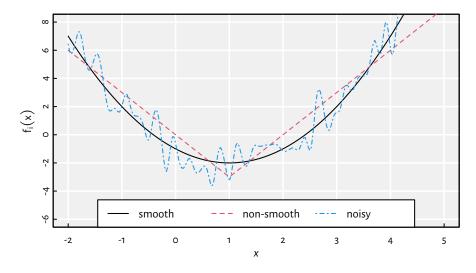


Figure 6.4: Smooth vs. non-smooth vs. noisy objective functions

6.1.4 Example Objective over a 2D Domain

Of course, our objective function does not necessarily have to be defined over a onedimensional domain.

For example, consider the following function:

```
g(x_1,x_2) = \log \left( (x_1^2 + x_2 - 5)^2 + (x_1 + x_2^2 - 3)^2 + x_1^2 - 1.60644 \dots \right)
```

```
g <- function(x1, x2)
        log((x1^2+x2-5)^2+(x1+x2^2-3)^2+x1^2-1.60644366086443841)
x1 <- seq(-5, 5, length.out=100)
x2 <- seq(-5, 5, length.out=100)
# outer() expands two vectors to form a 2D grid
# and applies a given function on each point
y <- outer(x1, x2, g)</pre>
```

There are four local minima:

X1	x2	f(x1,x2)
2.2780	-0.61343	1.3564
-2.6123	-2.34546	1.7051
1.7988	1.19879	0.6955
-1.5423	2.15641	0.0000

The global minimum is at $\mathbf{x}^* = (x_1^*, x_2^*)$ as below: q(-1.542255693195422641930153, 2.156405289793087261832605)

[1] 0

Let's explore various ways of depicting f first. A contour plot and a heat map are given in Figure 6.5.

```
par(mfrow=c(1,2)) # 2 in 1
# lefthand plot:
contour(x1, x2, y, nlevels=25)
points(-1.54226, 2.15641, col=2, pch=3)
# righthand plot:
image(x1, x2, y)
contour(x1, x2, y, add=TRUE)
```

Two perspective plots (views from different angles) are given in Figure 6.6.

par(mfrow=c(1,2)) # 2 in 1
persp(x1, x2, y, phi=30, theta=-5, shade=2, border=NA)
persp(x1, x2, y, phi=30, theta=75, shade=2, border=NA)

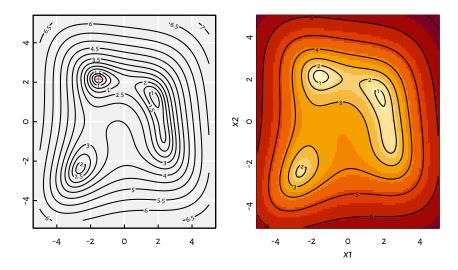


Figure 6.5: A contour plot and a heat map of $g(x_1, x_2)$

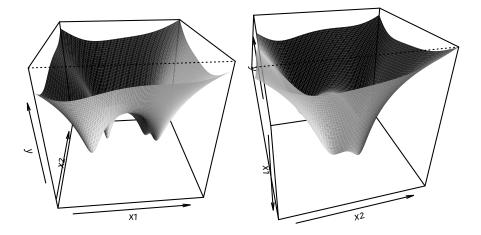


Figure 6.6: Perspective plots of $g(x_1, x_2)$

Remark. As usual, depicting functions that are defined over high-dimensional (3D and higher) domains is... difficult. Usually 1D or 2D projections can give us some neat intuitions though.

6.2 Iterative Methods

6.2.1 Introduction

Many optimisation algorithms are built around the following scheme:

Starting from a random point, perform a walk, in each step deciding where to go based on the idea of where the location of the minimum might be.

Example. Imagine we're to cycle from Deakin University's Burwood Campus to the CBD not knowing the route and with GPS disabled – we'll have to ask many people along the way, but we'll eventually (because most people are good) get to some CBD (say, in Perth).

More formally, we are interested in iterative algorithms that operate in a greedy-like manner:

- 1. $\mathbf{x}^{(0)}$ initial guess (e.g., generated at random)
- 2. for i = 1, ..., M:
 - a. $\mathbf{x}^{(i)} = \mathbf{x}^{(i-1)} + [\text{guessed direction}]$ b. if $|f(\mathbf{x}^{(i)}) - f(\mathbf{x}^{(i-1)})| < \varepsilon$ break
- 3. return $\mathbf{x}^{(i)}$ as result

Note that there are two stopping criteria, based on:

- *M* = maximum number of iterations,
- ε = tolerance, e.g, 10^{-8} .

6.2.2 Example in R

R has a built-in function, optim(), that provides an implementation of (amongst others) **the BFGS method** (proposed by Broyden, Fletcher, Goldfarb and Shanno in 1970).

Continuous Optimisation with Iterative Algorithms (*)

Remark. (*) BFGS uses the assumption that the objective function is smooth – the [guessed direction] is determined by computing the (partial) derivatives (or their finite-difference approximations). However, they might work well even if this is not the case. We'll be able to derive similar algorithms (called quasi-Newton ones) ourselves once we learn about Taylor series approximation by reading a book/taking a course on calculus.

Here, we shall use the BFGS as a *black-box* continuous optimisation method, i.e., without going into how it has been defined (in terms of our assumed math skills, it might be too early for this). Despite that, will still be able to point out a few interesting patterns.

```
optim(par, fn, method="BFGS")
```

where:

- par an initial guess (a numeric vector of length *p*)
- fn an objective function to minimise (takes a vector of length *p* on input, returns a single number)

Let us minimise the *g* function defined above (the one with the 2D domain):

```
# g needs to be rewritten to accept a 2-ary vector
g_vectorised <- function(x12) g(x12[1], x12[2])</pre>
# random starting point with coordinates in [-5, 5]
(x12_init <- runif(2, -5, 5))
## [1] -2.1242 2.8831
(res <- optim(x12 init, g vectorised, method="BFGS"))</pre>
## $par
## [1] -1.5423 2.1564
##
## $value
## [1] 1.4131e-12
##
## $counts
## function gradient
        101
                   21
##
##
## $convergence
## [1] 0
##
## $message
## NULL
Note that:
```

• par gives the location of the local minimum found,

- value gives the value of g at par,
- convergence of 0 is a successful one (we were able to satisfy the $|f(\mathbf{x}^{(i)}) f(\mathbf{x}^{(i-1)})| < \varepsilon$ condition).

We can even depict the points that the algorithm is "visiting", see Figure 6.7.

Remark. (*) Technically, the algorithm needs to evaluate a few more points in order to make the decision on where to go next (BFGS approximates the gradient and the Hessian matrix).

```
g_vectorised_plot <- function(x12) {
    points(x12[1], x12[2], col=2, pch=3) # draw
    g(x12[1], x12[2]) # return value
}
contour(x1, x2, y, nlevels=25)
res <- optim(x12_init, g_vectorised_plot, method="BFGS")</pre>
```

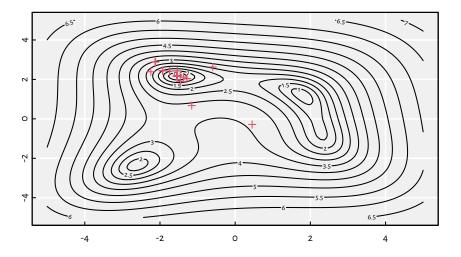


Figure 6.7: Each plotting symbol marks a point where the objective function was evaluated by the BFGS method

6.2.3 Convergence to Local Optima

We were lucky, because the local minimum that the algorithm has found coincides with the global minimum.

Let's see where does the BFGS algorithm converge if seek the minimum of the above g starting from many randomly chosen points uniformly distributed over the square $[-5,5] \times [-5,5]$:

```
res_value <- replicate(1000, {
    # this will be iterated 100 times
    x12_init <- runif(2, -5, 5)
    res <- optim(x12_init, g_vectorised, method="BFGS")
    res$value # return value from each iteration
})
table(round(res_value,3))</pre>
```

0 0.695 1.356 1.705 ## 273 352 156 219

Unfortunately, we find the global minimum only in $\sim~25\%$ cases, compare Figure 6.8.

```
hist(res_value, col="white", breaks=100, main=NA); box()
```

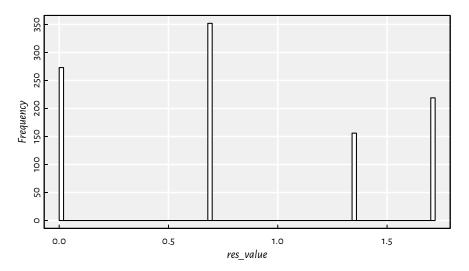


Figure 6.8: A histogram of the objective function's value at the local minimum found when using a random initial guess

Figure 6.9 depicts all the random starting points and where do we converge from them.

6.2.4 Random Restarts

A kind of "remedy" for the above limitation could be provided by *repeated local search*: in order to robustify an optimisation procedure it is often advised to consider multiple random initial points and pick the best solution amongst the identified local optima.

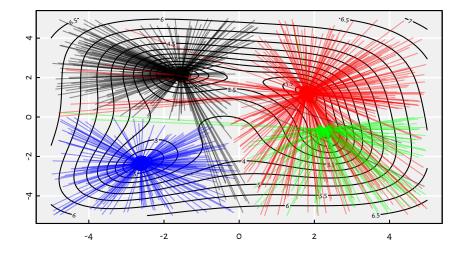


Figure 6.9: Each line segment connect a starting point to the point of BFGS's convergence; note that by starting in the neighbourhood of (0, -4) we can actually end up in any of the 4 local minima

```
# N
                 - number of restarts
# par_generator - a function generating initial guesses
                - further arguments to optim()
# ...
optim_with_restarts <- function(par_generator, ..., N=10) {</pre>
    res_best <- list(value=Inf) # cannot be worse than this
    for (i in 1:N) {
        res <- optim(par_generator(), ...)</pre>
        if (res$value < res_best$value)</pre>
            res_best <- res # a better candidate found
    }
    res_best
}
optim_with_restarts(function() runif(2, -5, 5),
    g_vectorised, method="BFGS", N=10)
## $par
## [1] -1.5423 2.1564
##
## $value
## [1] 3.9702e-13
##
## $counts
```

function gradient
48 17
##
\$convergence
[1] 0
##
\$message
NULL

Exercise 6.1 Food for thought: Can we really really guarantee that the global minimum will be found within N tries?

Solution.

Absolutely not.

6.3 Gradient Descent

6.3.1 Function Gradient (*)

How to choose the [guessed direction] in our iterative optimisation algorithm?

If we are minimising a smooth function, the simplest possible choice is to use the information included in the objective's **gradient**, which provides us with the information about the direction where the function decreases the fastest.

Definition. (*) Gradient of $f : \mathbb{R}^p \to \mathbb{R}$, denoted $\nabla f : \mathbb{R}^p \to \mathbb{R}^p$, is the vector of all its partial derivatives, (∇ – nabla symbol = differential operator)

$$\nabla f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1}(\mathbf{x}) \\ \vdots \\ \frac{\partial f}{\partial x_p}(\mathbf{x}) \end{bmatrix}$$

If we have a function $f(x_1, ..., x_p)$, the partial derivative w.r.t. the *i*-th variable, denoted $\frac{\partial f}{\partial x_i}$ is like an ordinary derivative w.r.t. x_i where $x_1, ..., x_{i-1}, x_{i+1}, ..., x_p$ are assumed constant.

Remark. Function differentiation is an important concept – see how it's referred to in, e.g., the keras package manual at https://keras.rstudio.com/reference/fit.ht ml.

Recall our *g* function defined above:

$$g(x_1,x_2) = \log \left((x_1^2 + x_2 - 5)^2 + (x_1 + x_2^2 - 3)^2 + x_1^2 - 1.60644 \dots \right)$$

It can be shown (*) that:

$$\frac{\partial g}{\partial x_1}(x_1, x_2) = \frac{4x_1(x_1^2 + x_2 - 5) + 2(x_1 + x_2^2 - 3) + 2x_1}{(x_1^2 + x_2 - 5)^2 + (x_1 + x_2^2 - 3)^2 + x_1^2 - 1.60644 \dots} \\ \frac{\partial g}{\partial x_2}(x_1, x_2) = \frac{2(x_1^2 + x_2 - 5) + 4x_2(x_1 + x_2^2 - 3)}{(x_1^2 + x_2 - 5)^2 + (x_1 + x_2^2 - 3)^2 + x_1^2 - 1.60644 \dots}$$

6.3.2 Three Facts on the Gradient

For now, we should emphasise three important facts:

Fact 1. If we are incapable of deriving the gradient analytically, we can rely on its finite differences approximation. Each partial derivative can be estimated by means of:

$$\frac{\partial f}{\partial x_i}(x_1,\ldots,x_p) \simeq \frac{f(x_1,\ldots,x_i+\delta,\ldots,x_p) - f(x_1,\ldots,x_i,\ldots,x_p)}{\delta}$$

for some small $\delta > 0$, say, $\delta = 10^{-6}$.

Remark. (*) Actually, a function's partial derivative, by definition, is the limit of the above as $\delta \rightarrow 0$.

Example implementation:

```
# gradient of f at x=c(x[1],...,x[p])
grad_approx <- function(f, x, delta=1e-6) {
    p <- length(x)
    gf <- numeric(p) # vector of length p
    for (i in 1:p) {
        xi <- x
        xi[i] <- xi[i]+delta
        gf[i] <- f(xi)
    }
</pre>
```

(gf-f(x))/delta

}

Remark. (*) Interestingly, some modern vector/matrix algebra frameworks like TensorFlow (upon which keras is built) or PyTorch, feature methods to "derive" the gradient algorithmically (autodiff; automatic differentiation).

```
Sanity check:
grad_approx(g_vectorised, c(-2, 2))
## [1] -3.1865 -1.3656
grad_g_vectorised(c(-2, 2))
## [1] -3.1865 -1.3656
grad_approx(g_vectorised, c(-1.542255693, 2.15640528979))
## [1] 1.0588e-05 1.9817e-05
grad_g_vectorised(c(-1.542255693, 2.15640528979))
```

[1] 4.1292e-09 3.5771e-10

By the way, there is also the grad() function in package numDeriv that might be a little more accurate (uses a different approximation formula).

Fact 2. The gradient of f at \mathbf{x} , $\nabla f(\mathbf{x})$, is a vector that points in the direction of the steepest slope. On the other hand, minus gradient, $-\nabla f(\mathbf{x})$, is the direction where the function decreases the fastest.

Remark. (*) This can be shown by considering a function's first-order Taylor series approximation.

Each gradient is a vector, therefore it can be depicted as an arrow. Figure 6.10 illustrates a few scaled gradients of the *g* function at different points – each arrow connects a point **x** to $\mathbf{x} \pm 0.1\nabla f(\mathbf{x})$.

Note that the blue arrows point more or less in the direction of the local minimum. Therefore, in our iterative algorithm, we may try taking the direction of the minus gradient! How far should we go in that direction? Well, a bit. We will refer to the desired step size as the **learning rate**, η .

This will be called the **gradient descent** method (GD; Cauchy, 1847).

Fact 3. If a function *f* has a local minimum at \mathbf{x}^* , then its gradient vanishes there, i.e., $\nabla f(\mathbf{x}^*) = [0, ..., 0]$.

Note that the above condition is a necessary, not sufficient one. For example, the

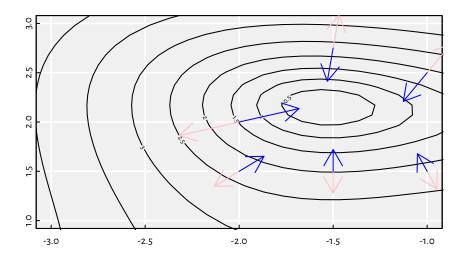


Figure 6.10: Scaled radients (pink arrows) and minus gradients (blue arrows) of $g(x_1, x_2)$ at different points

gradient also vanishes at a maximum or at a saddle point. In fact, we have what follows.

Theorem. (***) More generally, a twice-differentiable function has a local minimum at \mathbf{x}^* if and only if its gradient vanishes there and $\nabla^2 f(\mathbf{x}^*)$ (Hessian matrix = matrix of all second-order derivatives) is positive-definite.

6.3.3 Gradient Descent Algorithm (GD)

Taking the above into account, we arrive at the gradient descent algorithm:

- 1. $\mathbf{x}^{(0)}$ initial guess (e.g., generated at random)
- 2. for i = 1, ..., M:
 - a. $\mathbf{x}^{(i)} = \mathbf{x}^{(i-1)} \eta \nabla f(\mathbf{x}^{(i-1)})$ b. if $|f(\mathbf{x}^{(i)}) - f(\mathbf{x}^{(i-1)})| < \varepsilon$ break
- 3. return $\mathbf{x}^{(i)}$ as result

where $\eta > 0$ is a step size frequently referred to as the *learning rate*, because that's much more cool. We usually set η of small order of magnitude, say 0.01 or 0.1.

An implementation of the gradient descent algorithm is straightforward. In essence, it's the par <- par - eta*grad_g_vectorised(par) expression run in a loop, until convergence.

```
# par - initial guess
# fn - a function to be minimised
# gr - a function to return the gradient of fn
# eta - learning rate
# maxit - maximum number of iterations
# tol - convergence tolerance
optim_gd <- function(par, fn, gr, eta=0.01,</pre>
                        maxit=1000, tol=1e-8) {
    f last <- fn(par)</pre>
    for (i in 1:maxit) {
        par <- par - eta*grad_g_vectorised(par) # update step</pre>
        f_cur <- fn(par)
        if (abs(f_cur-f_last) < tol) break</pre>
        f_last <- f_cur
    }
    list( # see ?optim, section `Value`
        par=par,
        value=g_vectorised(par),
        counts=i,
        convergence=as.integer(i==maxit)
    )
}
```

Tests of the g function. First, let's try $\eta = 0.01$. Figure 6.11 zooms in the contour plot so that we can see the actual path the algorithm has taken.

```
eta <- 0.01
res <- optim_gd(c(-3, 1), g_vectorised, grad_g_vectorised, eta=eta)</pre>
str(res)
## List of 4
## $ раг
                : num [1:2] -1.54 2.16
## $ value
                : num 1.33e-08
## $ counts
                : int 135
## $ convergence: int 0
Now let's try \eta = 0.05.
eta <- 0.05
res <- optim_gd(c(-3, 1), g_vectorised, grad_g_vectorised, eta=eta)</pre>
str(res)
## List of 4
## $ раг
                 : num [1:2] -1.54 2.15
## $ value
                : num 0.000203
## $ counts
                : int 417
## $ convergence: int 0
```

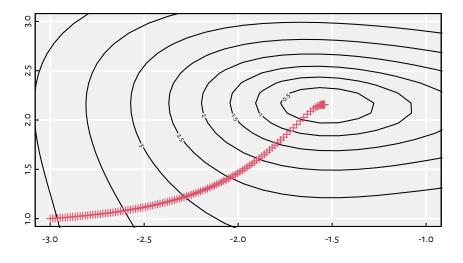


Figure 6.11: Path taken by the gradient descent algorithm with $\eta=0.01$

With an increased step size, the algorithm needed many more iterations (3 times as many), see Figure 6.12 for the path taken.

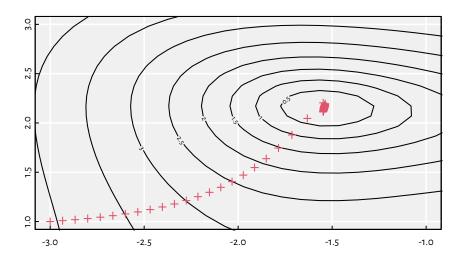


Figure 6.12: Path taken by the gradient descent algorithm with $\eta = 0.05$ And now for something completely different: $\eta = 0.1$, see Figure 6.13.

```
eta <- 0.1
res <- optim_gd(c(-3, 1), g_vectorised, grad_g_vectorised, eta=eta)</pre>
str(res)
## List of 4
                  : num [1:2] -1.52 2.33
##
    $ par
##
    $ value
                  : num 0.507
##
    $ counts
                  : int 1000
##
   $ convergence: int 1
    0.0
```

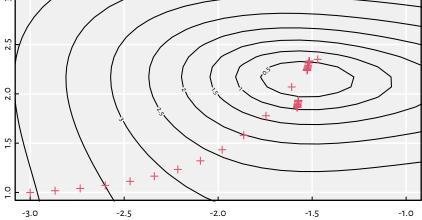


Figure 6.13: Path taken by the gradient descent algorithm with $\eta = 0.1$

The algorithm failed to converge.

If the learning rate η is too small, the convergence might be too slow or we might get stuck at a plateau. On the other hand, if η is too large, we might be overshooting and end up bouncing around the minimum.

This is why many optimisation libraries (including keras/TensorFlow) implement some of the following ideas:

- *learning rate decay* start with large η, decreasing it in every iteration, say, by some percent;
- *line search* determine optimal η in every step by solving a 1-dimensional optimisation problem w.r.t. $\eta \in [0, \eta_{max}]$;
- momentum the update step is based on a combination of the gradient direction and the previous change of the parameters, Δx ; can be used to accelerate search in the relevant direction and minimise oscillations.

Exercise 6.2 Try implementing at least the first of the above heuristics yourself. You can set *eta <- eta*0.95* in every iteration of the gradient descent procedure.

6.3.4 Example: MNIST (*)

In the previous chapter we've studied the MNIST dataset. Let us go back to the task of fitting a multiclass logistic regression model.

```
library("keras")
mnist <- dataset_mnist()
## Loaded Tensorflow version 2.9.1
# get train/test images in greyscale
X_train <- mnist$train$x/255 # to [0,1]
X_test <- mnist$test$x/255 # to [0,1]
# get the corresponding labels in {0,1,...,9}:
Y_train <- mnist$train$y
Y_test <- mnist$test$y</pre>
```

The labels need to be one-hot encoded:

```
one_hot_encode <- function(Y) {
    stopifnot(is.numeric(Y))
    c1 <- min(Y) # first class label
    cK <- max(Y) # last class label
    K <- cK-c1+1 # number of classes
    Y2 <- matrix(0, nrow=length(Y), ncol=K)
    Y2[cbind(1:length(Y), Y-c1+1)] <- 1
    Y2
}
Y_train2 <- one_hot_encode(Y_train)
Y_test2 <- one_hot_encode(Y_test)</pre>
```

Our task is to find the parameters **B** that minimise cross entropy $E(\mathbf{B})$ over the training set:

$$\min_{\mathbf{B}\in\mathbb{R}^{785\times10}} -\frac{1}{n^{\text{train}}} \sum_{i=1}^{n^{\text{train}}} \log \Pr(Y = y_i^{\text{train}} | \mathbf{x}_{i,\cdot}^{\text{train}}, \mathbf{B}).$$

In the previous chapter, we've relied on the methods implemented in the keras package. Let's do that all by ourselves now.

In order to come up with a working version of the gradient descent proced-

ure for classifying of MNIST digits, we will need to derive and implement grad_cross_entropy(). We do that below using matrix notation.

Remark. In the first reading, you can jump to the *Safe landing zone* below with no much loss in what we're trying to convey here (you will then treat grad_cross_entropy() as a black-box function). Nevertheless, keep in mind that this is the kind of maths you will need to master anyway sooner than later – this is inevitable. Perhaps you should go back to, e.g., the appendix on Matrix Computations with R or the chapter on Linear Regression? Learning maths is not a linear, step-by-step process. Everyone is different and will have a different path to success. The material needs to be frequently revisited, it will "click" someday, don't you worry; good stuff isn't built in a day or seven.

Recall that the output of the logistic regression model (1-layer neural network with softmax) can be written in the matrix form as:

 $\hat{\mathbf{Y}} = \text{softmax}\left(\dot{\mathbf{X}}\mathbf{B}\right)$,

where $\dot{\mathbf{X}} \in \mathbb{R}^{n \times 785}$ is a matrix representing *n* images of size 28×28, augmented with a column of 1s, and $\mathbf{B} \in \mathbb{R}^{785 \times 10}$ is the coefficients matrix and softmax is applied on each matrix row separately.

Of course, by the definition of matrix multiplication, $\hat{\mathbf{Y}}$ will be a matrix of size $n \times 10$, where $\hat{y}_{i,k}$ represents the predicted probability that the *i*-th image depicts the *k*-th digit.

```
# convert to matrices of size n*784
# and add a column of 1s
X_train1 <- cbind(1.0, matrix(X_train, ncol=28*28))
X_test1 <- cbind(1.0, matrix(X_test, ncol=28*28))</pre>
```

The nn_predict() function implements the above formula for \hat{Y} :

```
softmax <- function(T) {
   T <- exp(T)
   T/rowSums(T)
}
nn_predict <- function(B, X) {
   softmax(X %*% B)
}</pre>
```

Let's define the functions to compute the cross-entropy (which we shall minimise) and accuracy (which we shall report to a user):

```
cross_entropy <- function(Y_true, Y_pred) {
    -sum(Y_true*log(Y_pred))/nrow(Y_true)
}</pre>
```

```
accuracy <- function(Y_true, Y_pred) {
    # both arguments are one-hot encoded
    Y_true_decoded <- apply(Y_true, 1, which.max)
    Y_pred_decoded <- apply(Y_pred, 1, which.max)
    # proportion of equal corresponding pairs:
    mean(Y_true_decoded == Y_pred_decoded)
}</pre>
```

It may be shown (**) that the gradient of cross-entropy (with respect to the parameter matrix \mathbf{B}) can be expressed in the matrix form as:

```
\label{eq:cross_entropy} \begin{split} &\frac{1}{n}\dot{\mathbf{X}}^T\left(\hat{\mathbf{Y}}-\mathbf{Y}\right) \\ \texttt{grad\_cross\_entropy} <-\texttt{function}(\mathbf{X}, \ \texttt{Y\_true}, \ \texttt{Y\_pred}) \ \{ \\ & \texttt{t}(\mathbf{X}) \ \%*\% \ (\texttt{Y\_pred-Y\_true})/\texttt{nrow}(\texttt{Y\_true}) \\ \} \end{split}
```

Of course, we could always substitute the gradient with the finite difference approximation. Yet, this would be much slower).

The more mathematically inclined reader will sure notice that by expanding the formulas given in the previous chapter, we can write cross-entropy in the non-matrix form (n – number of samples, K – number of classes, p + 1 – number of model parameters; in our case K = 10 and p = 784) as:

$$E(\mathbf{B}) = -\frac{1}{n} \sum_{i=1}^{n} \sum_{k=1}^{K} y_{i,k} \log \left(\frac{\exp\left(\sum_{j=0}^{p} \dot{x}_{i,j}\beta_{j,k}\right)}{\sum_{c=1}^{K} \exp\left(\sum_{j=0}^{p} \dot{x}_{i,j}\beta_{j,c}\right)} \right)$$
$$= \frac{1}{n} \sum_{i=1}^{n} \left(\log\left(\sum_{k=1}^{K} \exp\left(\sum_{j=0}^{p} \dot{x}_{i,j}\beta_{j,k}\right)\right) - \sum_{k=1}^{K} y_{i,k} \sum_{j=0}^{p} \dot{x}_{i,j}\beta_{j,k}\right).$$

Partial derivatives of cross-entropy w.r.t. $\beta_{a,b}$ in non-matrix form can be derived (**) so as to get:

$$\frac{\partial E}{\partial \beta_{a,b}}(\mathbf{B}) = \frac{1}{n} \sum_{i=1}^{n} \dot{x}_{i,a} \left(\frac{\exp\left(\sum_{j=0}^{p} \dot{x}_{i,j} \beta_{j,b}\right)}{\sum_{k=1}^{K} \exp\left(\sum_{j=0}^{p} \dot{x}_{i,j} \beta_{j,k}\right)} - y_{i,b} \right)$$
$$= \frac{1}{n} \sum_{i=1}^{n} \dot{x}_{i,a} \left(\hat{y}_{i,b} - y_{i,b} \right).$$

Safe landing zone. In case you're lost with the above, continue from here. However, in the near future, harden up and revisit the skipped material to get the most out of our discussion.

We now have all the building blocks to implement the gradient descent method. The algorithm below follows exactly the same scheme as the one in the g function example. This time, however, we play with a parameter matrix **B** (not a parameter vector $[x_1, x_2]$) and we compute the gradient of cross-entropy (by means of grad_cross_entropy()), not the gradient of g.

Note that a call to system.time(expr) measures the time (in seconds) spent evaluating an expression expr.

```
## 90.573 39.037 32.149
```

Unfortunately, the method's convergence is really slow (we are optimising over 7850 parameters...) and the results after 100 iterations are disappointing:

accuracy(Y_train2, nn_predict(B, X_train1))

[1] 0.46462
accuracy(Y_test2, nn_predict(B, X_test1))

[1] 0.4735

Recall that in the previous chapter we obtained much better classification accuracy by using the keras package. What are we doing wrong then? Maybe keras implements some Super-Fancy Hyper Optimisation Framework (TM) (R) that we could get access to for only \$19.99 per month?

6.3.5 Stochastic Gradient Descent (SGD) (*)

In turns out that there's a very simple cure for the slow convergence of our method.

It might be shocking for some, but sometimes the true global minimum of cross-

entropy for the whole training set is not exactly what we *really* want. In our predictive modelling task, we are minimising train error, but what we actually desire is to minimise the test error (which we cannot refer to while training = no cheating!).

It is therefore rational to assume that both the train and the test set consist of random digits independently sampled from the set of "all the possible digits out there in the world".

Looking at the original objective (cross-entropy):

$$E(\mathbf{B}) = -\frac{1}{n^{\text{train}}} \sum_{i=1}^{n^{\text{train}}} \log \Pr(Y = y_i^{\text{train}} | \mathbf{x}_{i, \cdot}^{\text{train}}, \mathbf{B}).$$

How about we try fitting to different random samples of the train set in each iteration of the gradient descent method instead of fitting to the whole train set?

$$E(\mathbf{B}) \simeq -\frac{1}{b} \sum_{i=1}^{b} \log \Pr(Y = y_{\text{random_index}_i}^{\text{train}} | \mathbf{x}_{\text{random_index}_i}^{\text{train}}, \mathbf{B}),$$

where *b* is some fixed batch size. Such an approach is often called **stochastic gradient descent**.

Remark. This scheme is sometimes referred to as **mini-batch** gradient descent in the literature; some researchers reserve the term "stochastic" only for batches of size 1.

Stochastic gradient descent can be implemented very easily:

```
B <- matrix(rnorm(ncol(X_train1)*ncol(Y_train2)),</pre>
    nrow=ncol(X_train1))
eta <- 0.1
maxit <- 100
batch_size <- 32
system.time({
    for (i in 1:maxit) {
        wh <- sample(nrow(X train1), size=batch size)</pre>
        B <- B - eta*grad_cross_entropy(</pre>
             X_train1[wh,], Y_train2[wh,],
             nn_predict(B, X_train1[wh,])
        )
    }
})
##
      user system elapsed
##
     0.078
              0.005
                      0.082
```

```
accuracy(Y_train2, nn_predict(B, X_train1))
```

```
## [1] 0.46198
accuracy(Y test2, nn predict(B, X test1))
```

[1] 0.4693

The errors are much worse but at least we got the (useless) solution very quickly. That's the "fail fast" rule in practice.

However, why don't we increase the number of iterations and see what happens? We've allowed the classic gradient descent to scrabble around the MNIST dataset for almost 2 minutes.

```
B <- matrix(rnorm(ncol(X_train1)*ncol(Y_train2)),</pre>
    nrow=ncol(X_train1))
eta <- 0.1
maxit <- 10000
batch_size <- 32
system.time({
    for (i in 1:maxit) {
        wh <- sample(nrow(X_train1), size=batch_size)</pre>
        B <- B - eta*grad_cross_entropy(</pre>
            X_train1[wh,], Y_train2[wh,],
            nn_predict(B, X_train1[wh,])
        )
    }
})
##
      user system elapsed
##
     7.312 0.140
                     7.453
accuracy(Y_train2, nn_predict(B, X_train1))
## [1] 0.89222
accuracy(Y_test2, nn_predict(B, X_test1))
```

[1] 0.8935

Bingo! Let's take a closer look at how the train/test error behaves in each iteration for different batch sizes. Figures 6.14 and 6.15 depict the cases of batch_size of 32 and 128, respectively.

The time needed to go through 10000 iterations with batch size of 32 is:

user system elapsed
82.636 25.538 32.599

What's more, batch size of 128 takes:

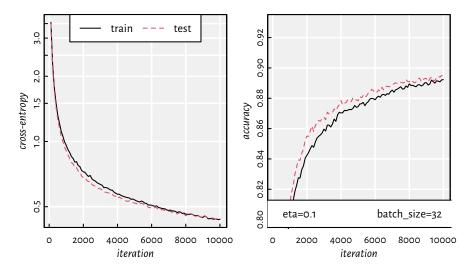
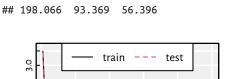


Figure 6.14: Cross-entropy and accuracy on the train and test set in each iteration of SGD; batch size of 32



system elapsed

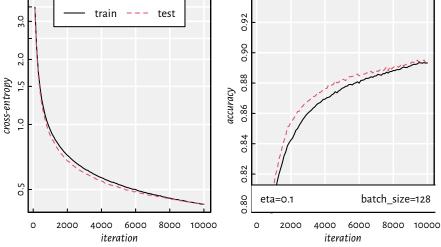


Figure 6.15: Cross-entropy and accuracy on the train and test set in each iteration of SGD; batch size of 128

Exercise 6.3 Draw conclusions.

##

user

6.4 A Note on Convex Optimisation (*)

Are there any cases where we are sure that a local minimum is the global minimum? It turns out that the answer to this is positive; for example, when we minimise objective functions that fulfil a special property defined below.

First let's note that given two points $\mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^p$, by taking any $\theta \in [0, 1]$, the point defined as:

$$\mathbf{t} = \theta \mathbf{x}_1 + (1 - \theta) \mathbf{x}_2$$

lies on a (straight) line segment between \mathbf{x}_1 and \mathbf{x}_2 .

Definition. We say that a function $f : \mathbb{R}^p \to \mathbb{R}$ is *convex*, whenever:

 $(\forall \mathbf{x}_1, \mathbf{x}_2 \in \mathbb{R}^p)(\forall \theta \in [0, 1]) \quad f(\theta \mathbf{x}_1 + (1 - \theta)\mathbf{x}_2) \le \theta f(\mathbf{x}_1) + (1 - \theta)f(\mathbf{x}_2)$

In other words, the function's value at any convex combination of two points is not greater than that combination of the function values at these two points. See Figure 6.16 for a graphical illustration of the above.

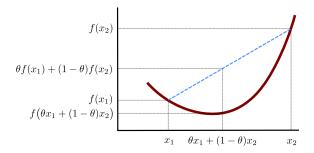


Figure 6.16: An illustration of the definition of a convex function

The following result addresses the question we posed at the beginning of this section.

Theorem. For any *convex* function f, if f has a local minimum at \mathbf{x}^+ then \mathbf{x}^+ is also its global minimum.

Convex functions are ubiquitous in machine learning, but of course not every objective function we are going to deal with will fulfil this property. Here are some basic examples of convex functions and how they come into being, see, e.g., (Boyd & Vandenberghe 2004) for more:

• the functions mapping x to x, x^2 , |x|, e^x are all convex,

- $f(x) = |x|^p$ is convex for all $p \ge 1$,
- if f is convex, then -f is concave,
- if f_1 and f_2 are convex, then $w_1f_1 + w_2f_2$ are convex for any $w_1, w_2 \ge 0$,
- if f_1 and f_2 are convex, then max{ f_1, f_2 } is convex,
- if f and g are convex and g is non-decreasing, then g(f(x)) is convex.

The above feature the building blocks of our error measures in supervised learning problems! In particular, sum of squared residuals in linear regression is a convex function of the underlying parameters. Also, cross-entropy in logistic regression is a convex function of the underlying parameters.

Theorem. (***) If a function is twice differentiable, then its convexity can be judged based on the positive-definiteness of its Hessian matrix.

Note that optimising convex functions is *relatively* easy, especially if they are differentiable. This is because they are quite well-behaving. However, it doesn't mean that we an analytic solution to the problem of their minimisation. Methods such as gradient descent or BFGS should work well (unless there are vast regions where a function is constant or the function's is defined over a large number of parameters).

- **Remark.** (**) There is a special class of constrained optimisation problems called linear and, more generally, quadratic programming that involves convex functions. Moreover, the Karush–Kuhn–Tucker (KKT) conditions address the more general problem of minimisation with constraints (i.e., not over the whole \mathbb{R}^p set); see (Nocedal & Wright 2006, Fletcher 2008) for more details.
- **Remark.** Not only functions, but also sets can be said to be convex. We say that $C \subseteq \mathbb{R}^p$ is a *convex set*, whenever the line segment joining any two points in *C* is fully included in *C*. More formally, for every $\mathbf{x}_1 \in C$ and $\mathbf{x}_2 \in C$, it holds $\theta \mathbf{x}_1 + (1 \theta)\mathbf{x}_2 \in C$ for all $\theta \in [0, 1]$; see Figure 6.17 for an illustration.

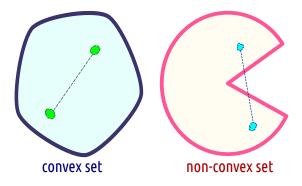


Figure 6.17: A convex and a non-convex set

6.5 Outro

6.5.1 Remarks

Solving continuous problems with many variables (e.g., deep neural networks) is time consuming – the more variables to optimise over (e.g., model parameters, think the number of interconnections between all the neurons), the slower the optimisation process.

Moreover, it might be the case that the sole objective function takes long to compute (think of image classification with large training samples).

Remark. (*) Although theoretically possible, good luck fitting a logistic regression model to MNIST with optim()'s BFGS – there are 7850 variables!

Training *deep* neural networks with SGD is even slower (more parameters), but there is a trick to propagate weight updates layer by layer, called *backpropagation* (actually used in every neural network library), see, e.g., (Sarle et al. 2002) and (Goodfellow et al. 2016). Moreover, keras and similar libraries implement automatic differentiation procedures that make its user's life much easier (swiping some of the tedious math under the comfy carpet).

keras implements various optimisers that we can refer to in the compile() function, see https://keras.rstudio.com/reference/compile.html and https://keras.io/optim izers/:

- SGD stochastic gradient descent supporting momentum and learning rate decay,
- RMSprop divides the gradient by a running average of its recent magnitude,
- Adam adaptive momentum,

and so on. These are all non-complicated variations of the pure stochastic GD. Some of them are just tricks that work well in some examples and destroy the convergence on many other ones. You can get into their details in a dedicated book/course aimed at covering neural networks (see, e.g., (Sarle et al. 2002), (Goodfellow et al. 2016)), but we have already developed some good intuitions here.

Keep in mind that with methods such as GD or SGD, there is no guarantee we reach a minimum, but an approximate solution is better than no solution at all. Also sometimes (especially in ML applications) we don't really need the actual minimum (e.g., when optimising the error with respect to the train set). Those "mathematically pure" will find that a bit... unaesthetic, but here we are. Maybe the solution makes your boss or client happy, maybe it generates revenue. Maybe it helps solve some other problem. Some claim that *a* solution is better than no solution at all, remember? But... is it really always the case though?

6.5.2 Further Reading

Recommended further reading: (Nocedal & Wright 2006), (Boyd & Vandenberghe 2004), (Fletcher 2008).

These lecture notes are distributed in the hope that they will be useful. Any bug reports are appreciated.

7.1 Unsupervised Learning

7.1.1 Introduction

In **unsupervised learning** (learning without a teacher), the input data points $\mathbf{x}_{1,...,\mathbf{x}_{n,..}}$ are not assigned any reference labels (compare Figure 7.1).

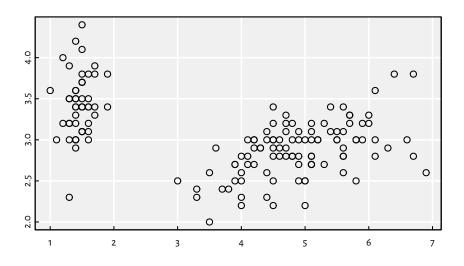


Figure 7.1: Unsupervised learning: "But what it is exactly that I have to do here?"

Our aim now is to discover the **underlying structure in the data**, whatever that means.

7.1.2 Main Types of Unsupervised Learning Problems

It turns out, however, that certain classes of unsupervised learning problems are not only intellectually stimulating, but practically useful at the same time.

In particular, in **dimensionality reduction** we seek a meaningful *projection* of a high dimensional space (think: many variables/columns).

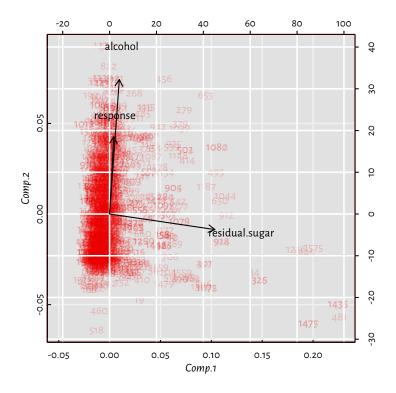


Figure 7.2: Principal component analysis (a dimensionality reduction technique) applied on three features of red wines

For instance, Figure 7.2 reveals that the "alcohol", "response" and "residual.sugar" dimensions of the Wine Quality dataset that we have studied earlier on can actually be nicely depicted (with no much loss of information) on a two-dimensional plot. It

turns out that the wine experts' opinion on a wine's quality is highly correlated with the amount of... alcohol in a bottle. On the other hand, sugar is orthogonal (unrelated) to these two.

Amongst example dimensionality reduction methods we find:

- Multidimensional scaling (MDS)
- Principal component analysis (PCA)
- Kernel PCA
- t-SNE
- Autoencoders (deep learning)

See, for example, (Hastie et al. 2017) for more details.

Furthermore, in **anomaly detection**, our task is to identify rare, suspicious, abnormal or out-standing items. For example, these can be cars on walkways in a park's security camera footage.

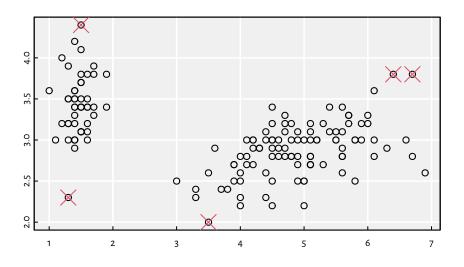


Figure 7.3: (#fig:anomaly_detection) Outliers can be thought of anomalies of some sort

Finally, the aim of **clustering** is to automatically discover some *naturally occurring* subgroups in the data set, compare Figure 7.4. For example, these may be customers having different shopping patterns (such as "young parents", "students", "boomers").

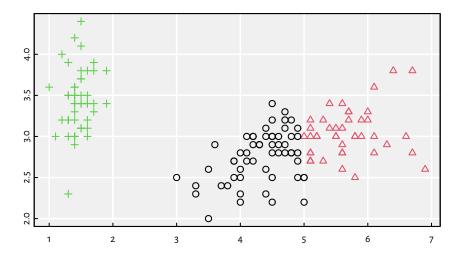


Figure 7.4: NEWS FLASH! SCIENTISTS SHOWED (by writing about it) THAT SOME VERY IMPORTANT THING (Iris dataset) COMES IN THREE DIFFERENT FLA-VOURS (by applying the 3-means clustering algorithm)!

7.1.3 Definitions

Formally, given $K \ge 2$, **clustering** aims is to find a *special kind* of a *K*-**partition** of the input data set **X**.

Definition. We say that $C = \{C_1, ..., C_K\}$ is a *K*-partition of **X** of size *n*, whenever:

- $C_k \neq \emptyset$ for all k (each set is nonempty),
- $C_k \cap C_l = \emptyset$ for all $k \neq l$ (sets are pairwise disjoint),
- $\bigcup_{k=1}^{K} C_k = \mathbf{X}$ (no point is neglected).

This can also be thought of as assigning each point a unique label $\{1, ..., K\}$ (think: colouring of the points, where each number has a colour). We will consider the point $\mathbf{x}_{i,\cdot}$ as labelled *j* if and only if it belongs to cluster C_i , i.e., $\mathbf{x}_{i,\cdot} \in C_i$.

Example applications of clustering:

- *taxonomisation*: e.g., partition the consumers to more "uniform" groups to better understand who they are and what do they need,
- *image processing*: e.g., object detection, like tumour tissues on medical images,
- *complex networks analysis*: e.g., detecting communities in friendship, retweets and other networks,
- *fine-tuning supervised learning algorithms*: e.g., recommender systems indicating content that was rated highly by users from the same group or learning multiple manifolds in a dimension reduction task.

The number of possible *K*-partitions of a set with *n* elements is given by *the Stirling number of the second kind*:

$$\binom{n}{K} = \frac{1}{K!} \sum_{j=0}^{K} (-1)^{K-j} \binom{K}{j} j^n;$$

e.g., already $\binom{n}{2} = 2^{n-1} - 1$ and $\binom{n}{3} = O(3^n)$ – that is a lot. Certainly, we are not just interested in "any" partition – some of them will be more meaningful or valuable than others. However, even one of the most famous ML textbooks provides us with only a vague hint of what we might be looking for:

"Definition". Clustering concerns "segmenting a collection of objects into subsets so that those within each cluster are more **closely related** to one another than objects assigned to different clusters" (Hastie et al. 2017).

It is not uncommon to equate the general definition of data clustering problems with... the particular outputs yield by specific clustering algorithms. It some sense, that sounds fair. From this perspective, we might be interested in identifying the two main types of clustering algorithms:

- **parametric** (model-based):
 - find clusters of specific shapes or following specific multidimensional probability distributions,
 - e.g., *K*-means, expectation-maximisation for Gaussian mixtures (EM), average linkage agglomerative clustering;
- nonparametric (model-free):
 - identify high-density or well-separable regions, perhaps in the presence of noise points,
 - e.g., single linkage agglomerative clustering, Genie, (H)DBSCAN, BIRCH.

In this chapter we'll take a look at two classical approaches to clustering:

- *K-means clustering* that looks for a specific number of clusters,
- (*agglomerative*) *hierarchical clustering* that outputs a whole hierarchy of nested data partitions.

7.2 K-means Clustering

7.2.1 Example in R

Let's begin our clustering adventure by applying the K-means clustering method to find K = 3 groups in the famous Fisher's iris data set (variables Sepal.Width and Petal.Length variables only):

```
## [ reached getOption("max.print") -- omitted 51 entries ]
```

Remark. Later we'll see that nstart is responsible for random restarting the (local) optimisation procedure, just as we did in the previous chapter.

Let's draw a scatter plot that depicts the detected clusters:

```
plot(X, col=km$cluster)
```

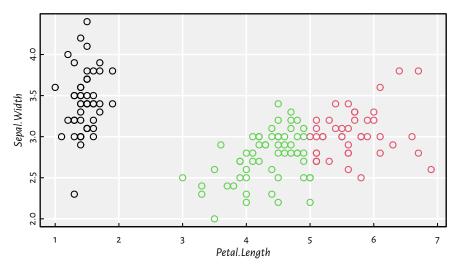


Figure 7.5: 3-means clustering on a projection of the Iris dataset

The colours in Figure 7.5 indicate the detected clusters. The left group is clearly well-separated from the other two.

What can we do with this information? Well, if we were experts on plants (in the 1930s), that'd definitely be something ground-breaking. Figure 7.6 is a version of the aforementioned scatter plot now with the true iris species added.

plot(X, col=km\$cluster, pch=as.numeric(iris\$Species))

Here is a contingency table for detected clusters vs. true iris species:

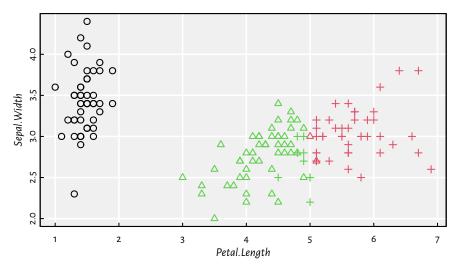


Figure 7.6: 3-means clustering (colours) vs true Iris species (shapes)

(C	<- t	able(kr	scluster,	iris\$Specie	s))
##					
##		setosa	versicolor	virginica	
##	1	50	Θ	Θ	
##	2	Θ	2	41	
##	3	0	48	9	

It turns out that the discovered partition matches the original iris species very well. We have just made a "discovery" in the field of botany (actually some research fields classify their objects of study into families, genres etc. by means of such tools).

Were the actual Iris species what we had hoped to match? Was that our aim? Well, surely we have had begun our journey with "clear minds" (yet with hungry eyes). Note that the true class labels were not used during the clustering procedure – we're dealing with an unsupervised learning problem here. The result turned useful, it's a win.

Remark. (*) There are several indices that assess the similarity of two partitions, for example the Adjusted Rand Index (ARI) the Normalised Mutual Information Score (NMI) or set matching-based measures, see, e.g., (Hubert & Arabie 1985), (Rezaei & Fränti 2016).

7.2.2 Problem Statement

The aim of *K*-means clustering is to find *K* "good" cluster centres $\mu_{1,.}, ..., \mu_{K,.}$

Then, a point $\mathbf{x}_{i,\cdot}$ will be assigned to the cluster represented by the closest centre. Here, by *closest* we mean the *squared* Euclidean distance.

More formally, assuming all the points are in a *p*-dimensional space, \mathbb{R}^p , we define the distance between the *i*-th point and the *k*-th centre as:

$$d(\mathbf{x}_{i,\cdot}, \boldsymbol{\mu}_{k,\cdot}) = \|\mathbf{x}_{i,\cdot} - \boldsymbol{\mu}_{k,\cdot}\|^2 = \sum_{j=1}^p \left(x_{i,j} - \mu_{k,j}\right)^2$$

Then the *i*-th point's cluster is determined by:

$$C(i) = \arg\min_{k=1,\dots,K} d(\mathbf{x}_{i,\cdot}, \boldsymbol{\mu}_{k,\cdot}),$$

where, as usual, $\arg \min$ (argument minimum) is the index k that minimises the given expression.

In the previous example, the three identified cluster centres in \mathbb{R}^2 are given by (see Figure 7.7 for illustration):

km\$centers

##	Petal.Length Sepa	l.Width	
## 1	1.4620	3.4280	
## 2	5.6721	3.0326	
## 3	4.3281	2.7509	
plot	(X, col=km\$cluster	, asp=1) # asp=1 gives the same scale on both axes	
<pre>points(km\$centers, cex=2, col=4, pch=16)</pre>			

Figure 7.8 depicts the partition of the whole \mathbb{R}^2 space into clusters based on the closeness to the three cluster centres.

To compute the distances between all the points and the cluster centres, we may call pdist::pdist():

```
library("pdist")
D <- as.matrix(pdist(X, km$centers))^2
head(D)</pre>
```

[,1] [,2] [,3]
[1,] 0.009028 18.469 9.1348
[2,] 0.187028 18.252 8.6357
[3,] 0.078228 19.143 9.3709
[4,] 0.109028 17.411 8.1199
[5,] 0.033428 18.573 9.2946
[6,] 0.279428 16.530 8.2272

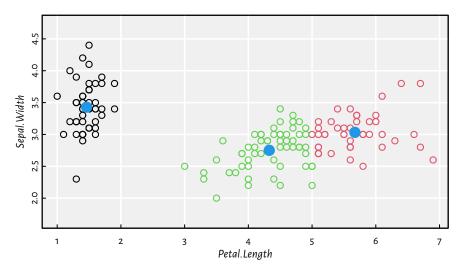


Figure 7.7: Cluster centres (blue dots) identified by the 3-means algorithm

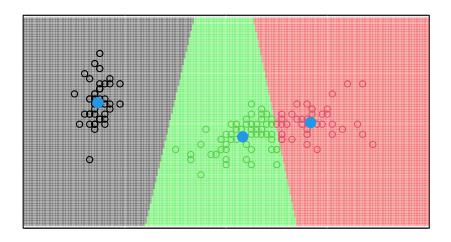


Figure 7.8: The division of the whole space into three sets based on the proximity to cluster centres (a so-called Voronoi diagram)

where D[i,k] gives the squared Euclidean distance between $\mathbf{x}_{i,\cdot}$ and $\boldsymbol{\mu}_{k,\cdot}$.

The cluster memberships the (arg mins) can now be determined by:

[1] TRUE

7.2.3 Algorithms for the K-means Problem

All good, but how do we find "good" cluster centres? Good, better, best… yet again we are in a need for a goodness-of-fit metric. In the *K*-means clustering, we determine $\mu_{1,.}, ..., \mu_{K,.}$ that minimise the total within-cluster distances (distances from each point to each own cluster centre):

$$\min_{\boldsymbol{\mu}_{1,\cdots,\boldsymbol{\mu}_{K,\cdot}\in\mathbb{R}^p}\sum_{i=1}^n d(\mathbf{x}_{i,\cdot},\boldsymbol{\mu}_{C(i),\cdot}),$$

Note that the μ s are also "hidden" inside the point-to-cluster belongingness mapping, C. Expanding the above yields:

$$\min_{\boldsymbol{\mu}_{1,\cdots,\boldsymbol{\mu}_{K,r}}\in\mathbb{R}^{p}}\sum_{i=1}^{n}\left(\min_{k=1,\dots,K}\sum_{j=1}^{p}\left(x_{i,j}-\mu_{k,j}\right)^{2}\right).$$

Unfortunately, the min operator in the objective function makes this optimisation problem not tractable with the methods discussed in the previous chapter.

The above problem is *hard* to solve (* more precisely, it is an NP-hard problem). Therefore, in practice we use various heuristics to solve it. The kmeans() function itself implements 3 of them: the Hartigan-Wong, Lloyd (a.k.a. Lloyd-Forgy) and MacQueen algorithms.

Remark. (*) Technically, there is no such thing as "the K-means algorithm" – all the aforementioned methods are particular heuristic approaches to solving the K-means clustering problem formalised as the above optimisation task. By setting nstart = 10 above, we ask the (Hartigan-Wong, which is the default one in kmeans()) algorithm to find 10 solution candidates obtained by considering different random initial clusterings and choose the best one (with respect to the sum of

within-cluster distances) amongst them. This does not guarantee finding the optimal solution, especially for very unbalanced datasets, but increases the likelihood of such.

Remark. The squared Euclidean distance was of course chosen to make computations easier. It turns out that for any given subset of input points $\mathbf{x}_{i_1,.}, ..., \mathbf{x}_{i_m,.}$, the point $\boldsymbol{\mu}_{k,.}$ that minimises the total distances to all of them, i.e.,

$$\min_{\boldsymbol{\mu}_{k,\cdot} \in \mathbb{R}^p} \sum_{\ell=1}^m \left(\sum_{j=1}^p \left(x_{i_{\ell},j} - \mu_{k,j} \right)^2 \right),$$

is exactly these points' *centroid* – which is given by the componentwise arithmetic means of their coordinates.

For example:

```
colMeans(X[km$cluster == 1,]) # centroid of the points in the 1st cluster
```

```
## Petal.Length Sepal.Width
## 1.462 3.428
km$centers[1,] # the centre of the 1st cluster
## Petal.Length Sepal.Width
## 1.462 3.428
```

Among the various heuristics to solve the K-means problem, Lloyd's algorithm (1957) is perhaps the simplest. This is probably the reason why it is sometimes referred to as "the" K-means algorithm:

- 1. Start with random cluster centres $\mu_{1,..}, \dots, \mu_{K,..}$
- 2. For each point $\mathbf{x}_{i,\cdot}$, determine its closest centre $C(i) \in \{1, \dots, K\}$:

$$C(i) = \arg\min_{k=1,\dots,K} d(\mathbf{x}_{i,\cdot}, \boldsymbol{\mu}_{k,\cdot}).$$

- 3. For each cluster $k \in \{1, ..., K\}$, compute the new cluster centre $\mu_{k, \cdot}$ as the centroid of all the point indices *i* such that C(i) = k.
- 4. If the cluster centres changed since the last iteration, go to step 2, otherwise stop and return the result.

(*) Here's an example implementation. As the initial cluster centres, let's pick some "noisy" versions of *K* randomly chosen points in **X**.

```
set.seed(12345)
K <- 3
# Random initial cluster centres:
M <- jitter(X[sample(1:nrow(X), K),])
M</pre>
```

Datal Lasath Casal USdah

##		Petal.Length	Sepal.widtn
##	[1,]	5.1004	3.0814
##	[2,]	4.7091	3.1861
##	[3,]	3.3196	2.4094

In what follows, we will be maintaining a matrix such that D[i,k] is the distance between the *i*-th point and the *k*-th centre and a vector such that idx[i] denotes the index of the cluster centre closest to the i-th point.

```
D <- as.matrix(pdist(X, M))^2</pre>
idx <- apply(D, 1, which.min)</pre>
repeat {
    # Determine the new cluster centres:
    M <- t(sapply(1:K, function(k) {</pre>
        # the centroid of all points in the k-th cluster:
        colMeans(X[idx==k,])
    }))
    # Store the previous cluster belongingness info:
    old idx <- idx
    # Recompute D and idx:
    D <- as.matrix(pdist(X, M))^2</pre>
    idx <- apply(D, 1, which.min)</pre>
    # Check if converged already:
    if (all(idx == old_idx)) break
}
```

Let's compare the obtained cluster centres with the ones returned by kmeans():

M # our result
Petal.Length Sepal.Width
[1,] 5.6721 3.0326
[2,] 4.3281 2.7509
[3,] 1.4620 3.4280
km\$center # result of kmeans()

.. ..

##		Petal.Length	Sepal.Width
##	1	1.4620	3.4280
##	2	5.6721	3.0326
##	3	4.3281	2.7509

These two represent exactly the same 3-partitions (note that the actual labels (the order of centres) are not important).

The value of the objective function (total within-cluster distances) at the identified candidate solution is equal to:

```
sum(D[cbind(1:nrow(X),idx)]) # indexing with a 2-column matrix!
```

```
## [1] 40.737
km$tot.withinss # as reported by kmeans()
```

[1] 40.737

We would need it if we were to implement the nstart functionality, which is left as an:

Exercise 7.1 (*) Wrap the implementation of the Lloyd algorithm into a standalone R function, with a similar look-and-feel as the original kmeans().

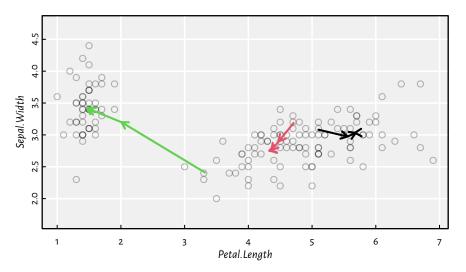


Figure 7.9: The arrows denote the cluster centres in each iteration of the Lloyd algorithm

On a side note, our algorithm needed 4 iterations to identify the (locally optimal) cluster centres. Figure 7.9 depicts its quest for the clustering grail.

7.3 Agglomerative Hierarchical Clustering

7.3.1 Introduction

In K-means, we need to specify the number of clusters, K, in advance. What if we don't have any idea how to choose this parameter (which is often the case)?

Also, the problem with K-means is that there is no guarantee that a K-partition is any "similar" to the K'-one for $K \neq K'$, see Figure 7.10.

```
km1 <- kmeans(X, 3, nstart=10)
km2 <- kmeans(X, 4, nstart=10)
plot(X, col=km1$cluster, pch=km2$cluster, asp=1)</pre>
```

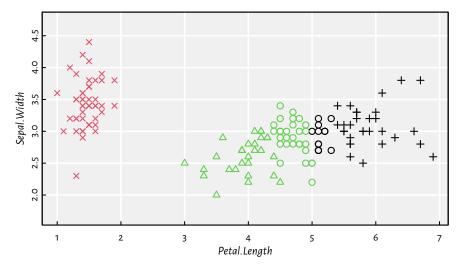


Figure 7.10: 3-means (colours) vs. 4-means (symbols) on example data; the "circle" cluster cannot decide if it likes the green or the black one more

Hierarchical methods, on the other hand, output a whole hierarchy of mutually *nested* partitions, which increase the interpretability of the results. A *K*-partition for any *K* can be extracted later at any time.

In this book we will be interested in *agglomerative* hierarchical algorithms:

- at the lowest level of the hierarchy, each point belongs to its own cluster (there are *n* singletons);
- at the highest level of the hierarchy, there is one cluster that embraces all the points;

• moving from the *i*-th to the (*i* + 1)-th level, we select (somehow; see below) a pair of clusters to be merged.

7.3.2 Example in R

The most basic implementation of a few agglomerative hierarchical clustering algorithms is provided by the hclust() function, which works on a pairwise distance matrix.

```
# Euclidean distances between all pairs of points:
D <- dist(X)
# Apply Complete Linkage (the default, details below):
h <- hclust(D) # method="complete"
print(h)
##
## Call:
## hclust(d = D)
##
## Cluster method : complete
## Distance : euclidean
## Number of objects: 150
```

Remark. There are n(n-1)/2 unique pairwise distances between n points. Don't try calling dist() on large data matrices. Already n = 100,000 points consumes 40 GB of available memory (assuming that each distance is stored as an 8-byte double-precision floating point number); packages fastcluster and genieclust, among other, aim to solve this problem.

The obtained hierarchy (*tree*) can be *cut* at an arbitrary level by applying the cutree() function.

The cuts of the hierarchy at different levels are depicted in Figure 7.11. The obtained 3-partition also matches the true Iris species quite well. However, now it makes total sense to "zoom" our partitioning in or out and investigate how are the subgroups decomposed or aggregated when we change *K*.

```
par(mfrow=c(2,2))
plot(X, col=cutree(h, k=5), ann=FALSE)
legend("top", legend="k=5", bg="white")
plot(X, col=cutree(h, k=4), ann=FALSE)
legend("top", legend="k=4", bg="white")
```

```
plot(X, col=cutree(h, k=3), ann=FALSE)
legend("top", legend="k=3", bg="white")
plot(X, col=cutree(h, k=2), ann=FALSE)
legend("top", legend="k=2", bg="white")
```

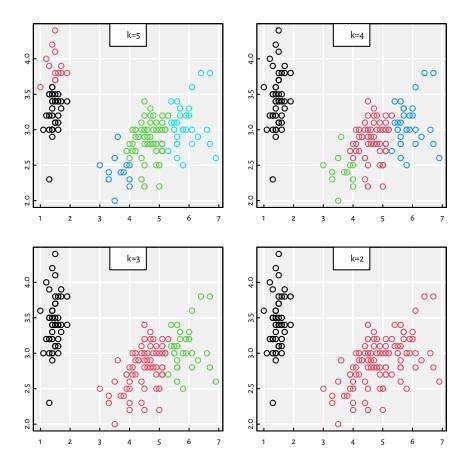


Figure 7.11: Complete linkage – 4 different cuts

7.3.3 Linkage Functions

Let's formalise the clustering process. Initially, $C^{(0)} = \{\{\mathbf{x}_{1,\cdot}\}, \dots, \{\mathbf{x}_{n,\cdot}\}\}$, i.e., each point is a member of its own cluster.

While an agglomerative hierarchical clustering algorithm is being computed, there are n - k clusters at the *k*-th step of the procedure, $C^{(k)} = \{C_1^{(k)}, \dots, C_{n-k}^{(k)}\}$.

When proceeding from step *k* to k + 1, we determine the two groups $C_u^{(k)}$ and $C_v^{(k)}$,

u < v, to be *merged* together so that the clustering at the higher level is of the form:

$$C^{(k+1)} = \left\{ C_1^{(k)}, \dots, C_{u-1}^{(k)}, C_u^{(k)} \cup C_v^{(k)}, C_{u+1}^{(k)}, \dots, C_{v-1}^{(k)}, C_{v+1}^{(k)}, \dots, C_{n-k}^{(k)} \right\}.$$

Thus, $(C^{(0)}, C^{(1)}, \dots, C^{(n-1)})$ form a sequence of *nested* partitions of the input dataset with the last level being just one big cluster, $C^{(n-1)} = \{\{\mathbf{x}_{1,\cdot}, \mathbf{x}_{2,\cdot}, \dots, \mathbf{x}_{n,\cdot}\}\}$.

There is one component missing – how to determine the pair of clusters $C_u^{(k)}$ and $C_v^{(k)}$ to be merged with each other at the *k*-th iteration? Of course this will be expressed as some optimisation problem (although this time, a simple one)! The decision will be based on:

$$\arg\min_{u < v} d^*(C_u^{(k)}, C_v^{(k)}),$$

where $d^*(C_u^{(k)}, C_v^{(k)})$ is the *distance* between two clusters $C_u^{(k)}$ and $C_v^{(k)}$.

Note that we usually only consider the distances between *individual points*, not sets of points. Hence, d^* must be a suitable extension of a pointwise distance d (usually the Euclidean metric) to whole sets.

We will assume that $d^*(\{\mathbf{x}_{i,\cdot}\}, \{\mathbf{x}_{j,\cdot}\}) = d(\mathbf{x}_{i,\cdot}, \mathbf{x}_{j,\cdot})$, i.e., the distance between singleton clusters is the same as the distance between the points themselves. As far as more populous point groups are concerned, there are many popular choices of d^* (which in the context of hierarchical clustering we call *linkage functions*):

• single linkage:

$$d_{S}^{*}(C_{u}^{(k)}, C_{v}^{(k)}) = \min_{\mathbf{x}_{i,\cdot} \in C_{u}^{(k)}, \mathbf{x}_{j,\cdot} \in C_{v}^{(k)}} d(\mathbf{x}_{i,\cdot}, \mathbf{x}_{j,\cdot}),$$

• complete linkage:

$$d_{\mathsf{C}}^{*}(C_{u}^{(k)}, C_{v}^{(k)}) = \max_{\mathbf{x}_{i,\cdot} \in C_{u}^{(k)}, \mathbf{x}_{j,\cdot} \in C_{v}^{(k)}} d(\mathbf{x}_{i,\cdot}, \mathbf{x}_{j,\cdot}),$$

• average linkage:

$$d_{\mathbf{A}}^{*}(C_{u}^{(k)}, C_{v}^{(k)}) = \frac{1}{|C_{u}^{(k)}||C_{v}^{(k)}|} \sum_{\mathbf{x}_{i,\cdot} \in C_{u}^{(k)}} \sum_{\mathbf{x}_{i,\cdot} \in C_{v}^{(k)}} d(\mathbf{x}_{i,\cdot}, \mathbf{x}_{j,\cdot}).$$

An illustration of the way different linkages are computed is given in Figure 7.12.

Assuming d_S^* , d_C^* or d_A^* in the aforementioned procedure leads to single, complete or average linkage-based agglomerative hierarchical clustering algorithms, respectively (referred to as single linkage etc. for brevity).

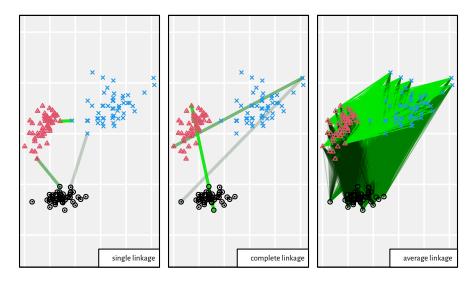


Figure 7.12: In single linkage, we find the closest pair of points; in complete linkage, we seek the pair furthest away from each other; in average linkage, we determine the arithmetic mean of all pairwise distances

```
hs <- hclust(D, method="single")
hc <- hclust(D, method="complete")
ha <- hclust(D, method="average")</pre>
```

Figure 7.13 compares the 5-, 4- and 3-partitions obtained by applying the 3 above linkages. Note that it's in very nature of the single linkage algorithm that it's highly sensitive to outliers.

7.3.4 Cluster Dendrograms

A *dendrogram* (which we can plot by calling plot(h), where h is the result returned by hclust()) depicts the distances (as defined by the linkage function) between the clusters merged at every stage of the agglomerative procedure. This can provide us with some insight into the underlying data structure as well as with hits about at which level the tree could be cut.

Figure 7.14 depicts the three dendrograms that correspond to the clusterings obtained by applying different linkages. Each tree has 150 leaves (at the bottom) that represent the 150 points in our example dataset. Each "edge" (joint) represents a group of points being merged. For instance, the very top joint in the middle subfigure is located at height of $\simeq 6$, which is exactly the maximal pairwise distance (complete linkage) between the points in the last two last clusters.

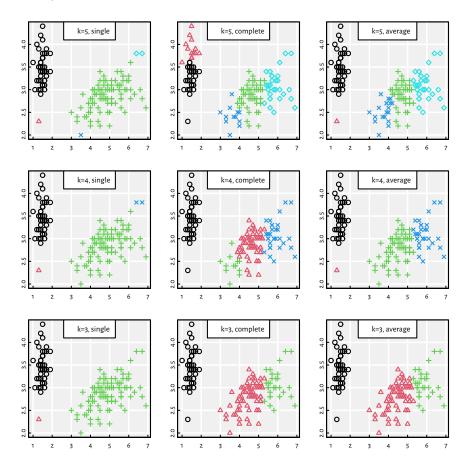


Figure 7.13: 3 cuts of 3 different hierarchies

7.4 Exercises in R

7.4.1 Clustering of the World Factbook

Let's perform a cluster analysis of countries based on the information contained in the World Factbook dataset:

Exercise 7.2 Remove all the columns that consist of more than 40 missing values. Then remove all the rows with at least 1 missing value.

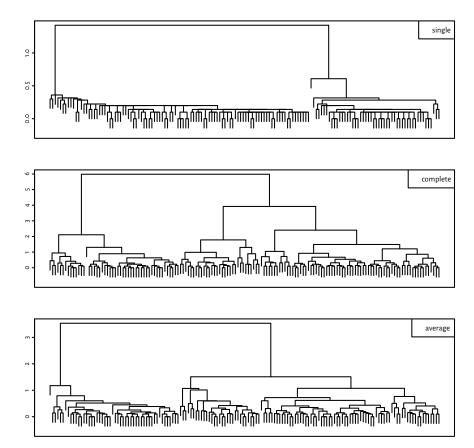


Figure 7.14: Cluster dendrograms for the single, complete and average linkages

Solution.

To remove appropriate columns, we must first count the number of NAs in them.

```
count_na_in_columns <- sapply(factbook, function(x) sum(is.na(x)))
factbook <- factbook[count_na_in_columns <= 40] # column removal</pre>
```

Getting rid of the rows plagued by missing values is as simple as calling the na.omit() function:

factbook <- na.omit(factbook) # row removal
dim(factbook) # how many rows and cols remained</pre>

[1] 203 23

Missing value removal is necessary for metric-based clustering methods, especially K-means. Otherwise, some of the computed distances would be not available.

Exercise 7.3 Standardise all the numeric columns.

Solution.

Distance-based methods are very sensitive to the order of magnitude of the variables, and our dataset is a mess with regards to this (population, GDP, birth rate, oil production etc.) – standardisation of variables is definitely a good idea:

```
for (i in 2:ncol(factbook)) # skip `country`
factbook[[i]] <- (factbook[[i]]-mean(factbook[[i]]))/
sd(factbook[[i]])</pre>
```

Recall that Z-scores (values of the standardised variables) have a very intuitive interpretation: 0 is the value equal to the column mean, 1 is one standard deviation above the mean, -2 is two standard deviations below the mean etc.

Exercise 7.4 Apply the 2-means algorithm, i.e., K-means with K = 2. Analyse the results.

Solution.

Calling kmeans():

km <- kmeans(factbook[-1], 2, nstart=10)</pre>

Let's split the country list w.r.t. the obtained cluster labels. It turns out that the obtained partition is heavily imbalanced, so we'll print only the contents of the first group:

```
km_countries <- split(factbook[[1]], km$cluster)
km_countries[[1]]</pre>
```

[1] "China" "India" "United States"

With regards to which criteria has the K-means algorithm distinguished the countries? Let's inspect the cluster centres to check the average Z-scores of all the countries in each cluster:

```
t(km$centers) # transposed for readability
```

##	1 2
## агеа	3.661581 -0.0549237
## population	6.987279 -0.1048092
## median_age	0.477991 -0.0071699
<pre>## population_growth_rate</pre>	-0.252774 0.0037916
## birth_rate	-0.501030 0.0075155
## death_rate	0.153915 -0.0023087

##	net_migration_rate	0.236449	-0.0035467
##	infant_mortality_rate	-0.139577	0.0020937
##	life_expectancy_at_birth	0.251541	-0.0037731
##	total_fertility_rate	-0.472716	0.0070907
##	gdp_purchasing_power_parity	7.213681	-0.1082052
##	gdp_real_growth_rate	0.369499	-0.0055425
##	gdp_per_capita_ppp	0.298103	-0.0044715
##	labor_force	6.914319	-0.1037148
##	taxes_and_other_revenues	-0.922735	0.0138410
##	<pre>budget_surplus_or_deficit</pre>	-0.012627	0.0001894
##	inflation_rate_consumer_prices	-0.096626	0.0014494
##	exports	5.341178	-0.0801177
##	imports	5.956538	-0.0893481
##	telephones_fixed_lines	5.989858	-0.0898479
##	internet_users	6.997126	-0.1049569
##	airports	4.551832	-0.0682775

Countries in Cluster 2 are... average (Z-scores ≈ 0). On the other hand, the three countries in Cluster 1 dominate the others w.r.t. area, population, GDP PPP, labour force etc.

Exercise 7.5 Apply the complete linkage agglomerative hierarchical clustering algorithm.

Solution.

Recall that the complete linkage-based method is implemented in the hclust() function:

```
d <- dist(factbook[-1]) # skip `country`
h <- hclust(d, method="complete")</pre>
```

A "nice" number of clusters to divide our dataset into can be read from the dendrogram, see Figure 7.15.

plot(h, labels=FALSE, ann=FALSE); box()

It seems that a 9-partition might reveal something interesting, because it will distinguish two larger country groups. However, there will be many singletons if we do so either way.

```
y <- cutree(h, 9)
h_countries <- split(factbook[[1]], y)</pre>
sapply(h_countries, length) # number of elements in each cluster
                                         9
##
     1
          2
              З
                   Δ
                       5
                           6
                                7
                                    8
## 138
        56
              1
                   1
                       3
                           1
                                1
                                    1
                                         1
```

Most likely this is not an interesting partitioning of this dataset, therefore we'll not be exploring it any further.

```
222
```

Clustering

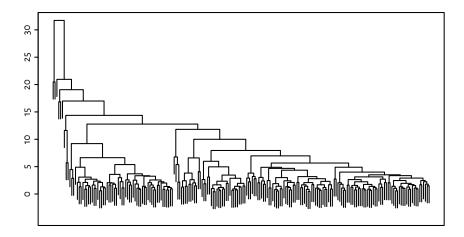


Figure 7.15: Cluster dendrogram for the World Factbook dataset – Complete linkage

Exercise 7.6 Apply the Genie clustering algorithm.

Solution.

The Genie algorithm (Gagolewski et al. 2016) is a hierarchical clustering algorithm implemented in R package genieclust¹. It's interface is compatible with hclust().

library("genieclust")
d <- dist(factbook[-1])
g <- gclust(d)</pre>

The cluster dendrogram in Figure 7.16 reveals 3 evident clusters.

```
plot(g, labels=FALSE, ann=FALSE); box()
```

Let's determine the 3-partition of the data set.

```
y <- cutree(g, 3)
```

Here are few countries in each cluster:

```
y <- cutree(g, 3)
sapply(split(factbook$countr, y), sample, 6)
```

```
## 1 2
## [1,] "Dominican Republic" "Congo, Republic of the"
## [2,] "Venezuela" "Sao Tome and Principe"
```

¹https://genieclust.gagolewski.com/

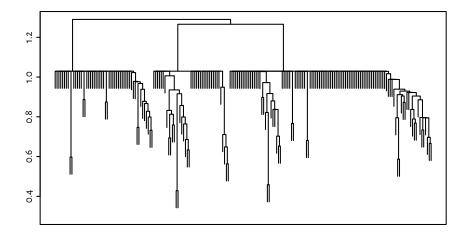


Figure 7.16: Cluster dendrogram for the World Factbook dataset – Genie algorithm

```
"Tanzania"
## [3,] "Sri Lanka"
## [4,] "Malta"
                              "Botswana"
## [5,] "China"
                              "Congo, Democratic Republic of the"
## [6,] "Tajikistan"
                              "Malawi"
##
        3
## [1,] "Lithuania"
## [2,] "Portugal"
## [3,] "Korea, South"
## [4,] "Bulgaria"
## [5,] "Germany"
## [6,] "Moldova"
```

We can draw the countries in each cluster on a map by using the rworldmap package (see its documentation for more details), see Figure 7.17.

203 codes from your data successfully matched countries in the map

0 codes from your data failed to match with a country code in the map
40 codes from the map weren't represented in your data

```
par(mar=c(0,0,0,0))
mapCountryData(mapdata, nameColumnToPlot="cluster",
    catMethod="categorical", missingCountryCol="gray",
    colourPalette=brewer.pal(3, "Set1"),
    mapTitle="", addLegend=TRUE)
```

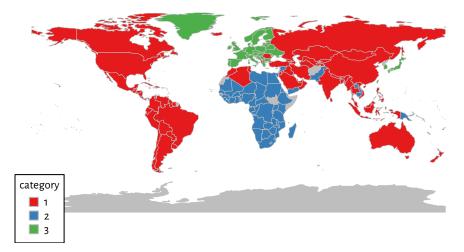


Figure 7.17: 3 clusters discovered by the Genie algorithm

Here are the average Z-scores in each cluster:

```
round(sapply(split(factbook[-1], y), colMeans), 3)
```

##	1	2	3
## агеа	0.124	-0.068	-0.243
## population	0.077	-0.058	-0.130
## median_age	0.118	-1.219	1.261
<pre>## population_growth_rate</pre>	-0.227	1.052	-0.757
## birth_rate	-0.316	1.370	-0.930
## death_rate	-0.439	0.071	1.075
<pre>## net_migration_rate</pre>	-0.123	0.053	0.260
<pre>## infant_mortality_rate</pre>	-0.366	1.399	-0.835
<pre>## life_expectancy_at_birth</pre>	0.354	-1.356	0.812
<pre>## total_fertility_rate</pre>	-0.363	1.332	-0.758
## gdp_purchasing_power_parity	0.084	-0.213	0.052
## gdp_real_growth_rate	-0.062	0.126	0.002
## gdp_per_capita_ppp	0.021	-0.744	0.905

```
## labor force
                                   0.087 -0.096 -0.107
## taxes and other revenues
                                  -0.095 -0.584 1.006
## budget surplus or deficit
                                  -0.113 -0.188 0.543
## inflation rate consumer prices 0.044 -0.013 -0.099
## exports
                                  -0.013 -0.318 0.447
## imports
                                   0.007 -0.308 0.379
## telephones fixed lines
                                   0.048 -0.244 0.186
## internet users
                                   0.093 -0.178 -0.016
## airports
                                   0.104 -0.131 -0.107
```

That is really interesting! The interpretation of the above is left to the reader.

7.4.2 Unbalance Dataset – K-Means Needs Multiple Starts

Let us consider a benchmark (artificial) dataset proposed in (Rezaei & Fränti 2016):

According to its authors, this dataset is comprised of 8 clusters: there are 3 groups on the lefthand side (2000 points each) and 5 on the right side (100 each).

```
plot(unbalance, asp=1)
```

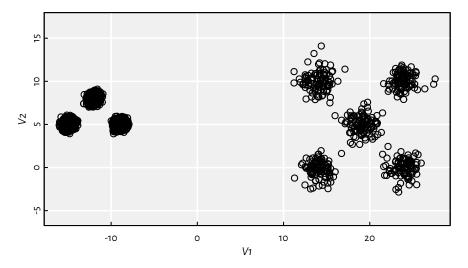


Figure 7.18: (#fig:sipu_unbalance2) sipu_unbalance dataset

Exercise 7.7 Apply the K-means algorithm with K = 8.

Solution.

Of course, here by "the" K-means we mean the default method available in the kmeans() function. The clustering results are depicted in Figure 7.19.

```
km <- kmeans(unbalance, 8, nstart=10)
plot(unbalance, asp=1, col=km$cluster)</pre>
```

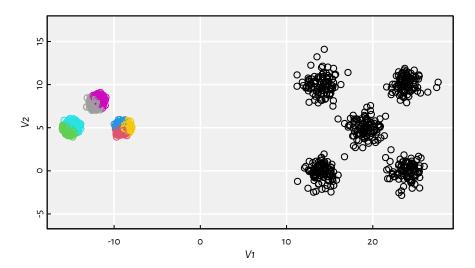


Figure 7.19: Results of K-means on the sipu_unbalance dataset

This is far from what we expected. The total within-cluster distances are equal to: km\$tot.withinss

[1] 21713

Increasing the number of restarts even further improves the solution, but the local minimum is still far from the global one, compare Figure 7.20.

```
km <- suppressWarnings(kmeans(unbalance, 8, nstart=1000, iter.max=1000))
plot(unbalance, asp=1, col=km$cluster)</pre>
```

```
km$tot.withinss
```

[1] 4378

Exercise 7.8 Apply the K-means algorithm starting from a "good" initial guess on the true cluster centres.

Solution.

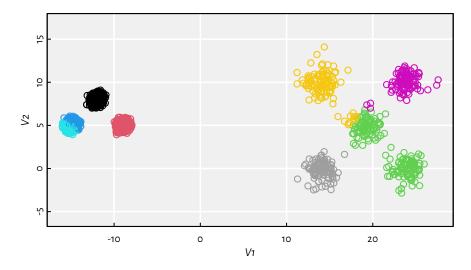


Figure 7.20: Results of K-means on the sipu_unbalance dataset – many more restarts

Clustering is – in its essence – an unsupervised learning method, so what we're going to do now could be called, let's be blunt about it, cheating. Luckily, we have an oracle at our disposal – it has provided us with the following educated guesses (by looking at the scatter plot) about the localisation of the cluster centres:

```
cntr <- matrix(ncol=2, byrow=TRUE, c(</pre>
   -15,
           5,
   -12,
           10,
   -10,
           5,
    15.
           0.
    15,
           10,
           5.
    20,
    25,
           0,
    25,
           10))
```

Running kmeans() yields the clustering depicted in Figure 7.21.

```
km <- kmeans(unbalance, cntr)
plot(unbalance, asp=1, col=km$cluster)
```

The total within-cluster distances are now equal to:

km\$tot.withinss

[1] 2144.9

This is finally the globally optimal solution to the K-means problem we were asked to solve. Recall that the algorithms implemented in the kmeans() function are just fast heuristics that are

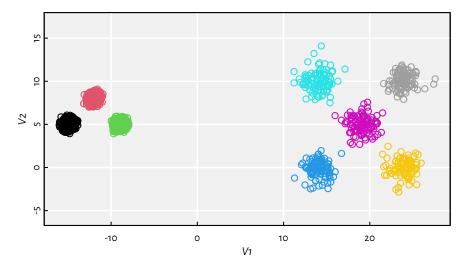


Figure 7.21: Results of K-means on the sipu_unbalance dataset – an educated guess on the cluster centres' locations

supposed to find local optima of the K-means objective function, which is given by the withincluster sum of squared Euclidean distances.

7.4.3 Clustering of Typical 2D Benchmark Datasets

Let us consider a few clustering benchmark datasets available at https://github.com /gagolews/clustering_benchmarks_v1 and http://cs.joensuu.fi/sipu/datasets/. Here is a list of file names together with the corresponding numbers of clusters (as given by datasets' authors):

Ks <- c(3, 2, 4, 7, 3, 8)

All the datasets are two-dimensional, hence we'll be able to visualise the obtained results and assess the sensibility of the obtained clusterings.

Exercise 7.9 Apply the K-means, the single, average and complete linkage and the Genie algorithm on the aforementioned datasets and discuss the results.

Solution.

Apart from a call to the Genie algorithm with the default parameters, we will also look at the results it generates when we set giniThreshold of 0.5.

The following function is our workhorse that will perform all the computations and will draw all the figures for a single dataset:

```
clusterise <- function(file, K) {</pre>
    X <- read.csv(file,
        header=FALSE, sep=" ", comment.char="#")
    d \ll dist(X)
    par(mfrow=c(2, 3))
    par(mar=c(0.5, 0.5, 2, 0.5))
    y <- kmeans(X, K, nstart=10)$cluster</pre>
    plot(X, asp=1, col=y, ann=FALSE, axes=FALSE)
    mtext("K-means", line=0.5)
    y <- cutree(hclust(d, "complete"), K)</pre>
    plot(X, asp=1, col=y, ann=FALSE, axes=FALSE)
    mtext("Complete Linkage", line=0.5)
    y <- cutree(hclust(d, "average"), K)</pre>
    plot(X, asp=1, col=y, ann=FALSE, axes=FALSE)
    mtext("Average Linkage", line=0.5)
    y <- cutree(hclust(d, "single"), K)</pre>
    plot(X, asp=1, col=y, ann=FALSE, axes=FALSE)
    mtext("Single Linkage", line=0.5)
    y <- cutree(genieclust::gclust(d), K) # gini_threshold=0.3</pre>
    plot(X, asp=1, col=y, ann=FALSE, axes=FALSE)
    mtext("Genie (default)", line=0.5)
    y <- cutree(genieclust::gclust(d, gini_threshold=0.5), K)</pre>
    plot(X, asp=1, col=y, ann=FALSE, axes=FALSE)
    mtext("Genie (g=0.5)", line=0.5)
}
```

Applying the above as clusterise(files[i], Ks[i]) yields Figures 7.22-7.27.

Note that, by definition, K-means is only able to detect clusters of convex shapes. The Genie algorithm, on the other hand, might fail to detect clusters of very small sizes amongst the more populous ones. Single linkage is very sensitive to outliers in data – it often outputs clusters of cardinality 1.

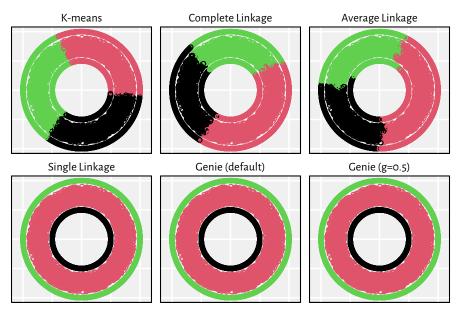


Figure 7.22: Clustering of the wut_isolation dataset

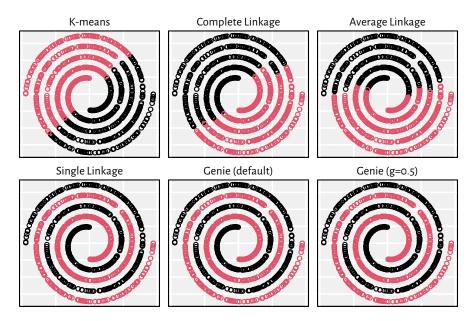


Figure 7.23: Clustering of the wut_mk2 dataset

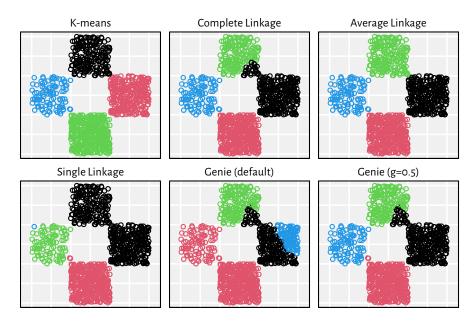


Figure 7.24: Clustering of the wut_z3 dataset

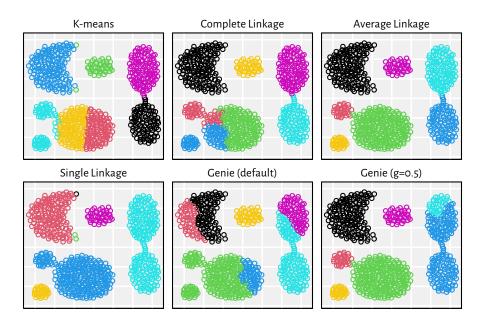


Figure 7.25: Clustering of the sipu_aggregation dataset

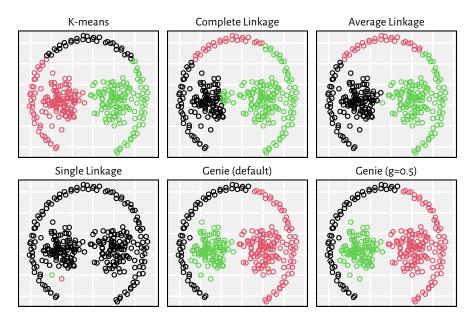


Figure 7.26: Clustering of the sipu_pathbased dataset

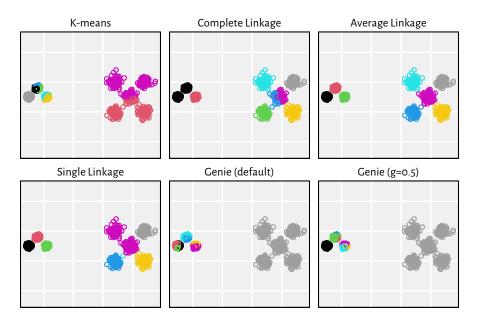


Figure 7.27: Clustering of the sipu_unbalance dataset

7.5 Outro

7.5.1 Remarks

Unsupervised learning is often performed during the data pre-processing and exploration stage. Assessing the quality of clustering is particularly challenging as, unlike in a supervised setting, we have no access to "ground truth" information.

In practice, we often apply different clustering algorithms and just see where they lead us. There's no teacher that would tell us what we should do, so whatever we do is awesome, right? Well, not precisely. Most frequently, you, my dear reader, will work for some party that's genuinely interested in your explaining why did you spent the last month coming up with nothing useful at all. Thus, the main body of work related to proving the use-full/less-ness will be on you.

Clustering methods can aid us in supervised tasks – instead of fitting a single "large model", it might be useful to fit separate models to each cluster.

To sum up, the aim of K-means is to find K clusters based on the notion of the points' closeness to the cluster centres. Remember that K must be set in advance. By definition (* via its relation to Voronoi diagrams), all clusters will be of convex shapes.

However, we may try applying K'-means for $K' \gg K$ to obtain a "fine grained" compressed representation of data and then combine the (sub)clusters into more meaningful groups using other methods (such as the hierarchical ones).

Iterative K-means algorithms are very fast (e.g., a mini-batch version of the algorithm can be implement to speed up the optimisation process) even for large data sets, but they may fail to find a desirable solution, especially if clusters are unbalanced.

Hierarchical methods, on the other hand, output a whole family of mutually nested partitions, which may provide us with insight into the underlying structure of data data. Unfortunately, there is no easy way to assign new points to existing clusters; yet, you can always build a classifier (e.g., a decision tree or a neural network) that learns the discovered labels.

A linkage scheme must be chosen with care, for instance, single linkage can be sensitive to outliers. However, it is generally the fastest. The methods implemented in hclust() are generally slow; they have time complexity between $O(n^2)$ and $O(n^3)$.

Remark. Note that the fastcluster package provides a more efficient and memorysaving implementation of some methods available via a call to hclust(). See also the genieclust package for a super-robust version of the single linkage algorithm based on the datasets's Euclidean minimum spanning tree, which can be computed quite quickly.

Clustering

Finally, note that all the discussed clustering methods are based on the notion of pairwise distances. These of course tend to behave weirdly in high-dimensional spaces ("the curse of dimensionality"). Moreover, some hardcore feature engineering might be needed to obtain meaningful results.

7.5.2 Further Reading

Recommended further reading: (James et al. 2017: Section 10.3)

Other: (Hastie et al. 2017: Section 14.3)

Additionally, check out other noteworthy clustering approaches:

- Genie (see R package genieclust) (Gagolewski et al. 2016, Cena & Gagolewski 2020)
- ITM (Müller et al. 2012)
- DBSCAN, HDBSCAN* (Ling 1973, Ester et al. 1996, Campello et al. 2015)
- K-medoids, K-medians
- Fuzzy C-means (a.k.a. weighted K-means) (Bezdek et al. 1984)
- Spectral clustering; e.g., (Ng et al. 2001)
- BIRCH (Zhang et al. 1996)

Optimisation with Genetic Algorithms (*)

These lecture notes are distributed in the hope that they will be useful. Any bug reports are appreciated.

8.1 Introduction

8.1.1 Recap

Recall that an **optimisation task** deals with finding an element **x** in a **search space** \mathbb{D} , that minimises or maximises an **objective function** $f : \mathbb{D} \to \mathbb{R}$:

$$\min_{\mathbf{x}\in\mathbb{D}}f(\mathbf{x}) \quad \text{or} \quad \max_{\mathbf{x}\in\mathbb{D}}f(\mathbf{x}),$$

In one of the previous chapters, we were dealing with **unconstrained continuous optimisation**, i.e., we assumed the search space is $\mathbb{D} = \mathbb{R}^p$ for some p.

Example problems of this kind: minimising mean squared error in linear regression or minimising cross-entropy in logistic regression.

The class of general-purpose iterative algorithms we've previously studied fit into the following scheme:

1. $\mathbf{x}^{(0)}$ – initial guess (e.g., generated at random)

b. if
$$|f(\mathbf{x}^{(i)}) - f(\mathbf{x}^{(i-1)})| < \varepsilon$$
 break

3. return $\mathbf{x}^{(i)}$ as result

where:

- *M* = maximum number of iterations
- ε = tolerance, e.g, 10^{-8}
- $\eta > 0 =$ learning rate

The algorithms such as gradient descent and BFGS (see optim()) give satisfactory results in the case of **smooth and well-behaving objective functions**.

However, if an objective has, e.g., many plateaus (regions where it is almost constant), those methods might easily get stuck in local minima.

The K-means clustering's objective function is a not particularly pleasant one – it involves a nested search for the closest cluster, with the use of the min operator.

8.1.2 K-means Revisited

In **K-means clustering** we are minimising the squared Euclidean distance to each point's cluster centre:

$$\min_{\boldsymbol{\mu}_{1,\cdots,\boldsymbol{\mu}_{K,r}}\in\mathbb{R}^{p}}\sum_{i=1}^{n}\left(\min_{k=1,\dots,K}\sum_{j=1}^{p}\left(x_{i,j}-\mu_{k,j}\right)^{2}\right).$$

This is an (NP-)hard problem! There is no efficient exact algorithm.

We need approximations. In the last chapter, we have discussed the iterative Lloyd's algorithm (1957), which is amongst a few procedures implemented in the kmeans() function.

To recall, Lloyd's algorithm (1957) is sometimes referred to as "the" K-means algorithm:

- 1. Start with random cluster centres $\mu_{1,..}, ..., \mu_{K,..}$
- 2. For each point $\mathbf{x}_{i,\cdot}$, determine its closest centre $C(i) \in \{1, \dots, K\}$.
- 3. For each cluster $k \in \{1, ..., K\}$, compute the new cluster centre $\mu_{k, \cdot}$ as the componentwise arithmetic mean of the coordinates of all the point indices *i* such that C(i) = k.
- 4. If the cluster centres changed since last iteration, go to step 2, otherwise stop and return the result.

As the procedure might get stuck in a local minimum, a few restarts are recommended (as usual).

Hence, we are used to calling:

kmeans(X, centers=k, nstart=10)

8.1.3 optim() vs. kmeans()

Let us compare how a general-purpose optimiser such as the BFGS algorithm implemented in optim() compares with a customised, problem-specific solver.

We will need some benchmark data.

```
gen_cluster <- function(n, p, m, s) {
    vectors <- matrix(rnorm(n*p), nrow=n, ncol=p)
    unit_vectors <- vectors/sqrt(rowSums(vectors^2))
    unit_vectors*rnorm(n, 0, s)+rep(m, each=n)
}</pre>
```

The above function generates *n* points in \mathbb{R}^p from a distribution centred at $\mathbf{m} \in \mathbb{R}^p$, spread randomly in every possible direction with scale factor *s*.

Two example clusters in \mathbb{R}^2 :

Let's generate the benchmark dataset ${\bf X}$ that consists of three clusters in a high-dimensional space.

```
set.seed(123)
p <- 32
Ns <- c(50, 100, 20)
Ms <- c(0, 1, 2)
s <- 1.5*p
K <- length(Ns)
X <- lapply(1:K, function(k)
    gen_cluster(Ns[k], p, rep(Ms[k], p), s))
X <- do.call(rbind, X) # rbind(X[[1]], X[[2]], X[[3]])</pre>
```

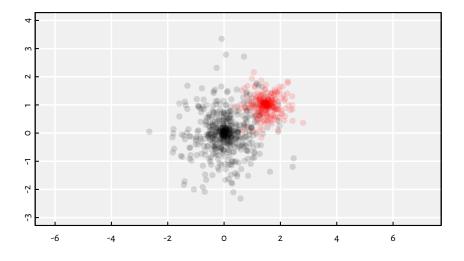


Figure 8.1: (#fig:gendata_example) plot of chunk gendata_example

The objective function for the K-means clustering problem:

```
library("FNN")
get_loss <- function(mu, X) {
    # For each point in X,
    # get the index of the closest point in mu:
    memb <- FNN::get.knnx(mu, X, 1)$nn.index
    # compute the sum of squared distances
    # between each point and its closes cluster centre:
    sum((X-mu[memb,])^2)
}</pre>
```

Setting up the solvers:

```
min_HartiganWong <- function(mu0, X)
    get_loss(
        # algorithm="Hartigan-Wong"
        kmeans(X, mu0, iter.max=100)$centers,
        X)
min_Lloyd <- function(mu0, X)
    get_loss(
        kmeans(X, mu0, iter.max=100, algorithm="Lloyd")$centers,
        X)
min_optim <- function(mu0, X)
    optim(mu0,</pre>
```

```
function(mu, X) {
    get_loss(matrix(mu, nrow=nrow(mu0)), X)
}, X=X, method="BFGS", control=list(reltol=1e-16)
)$val
```

Running the simulation:

```
nstart <- 100
set.seed(123)
res <- replicate(nstart, {
    mu0 <- X[sample(nrow(X), K),]
    c(
        HartiganWong=min_HartiganWong(mu0, X),
        Lloyd=min_Lloyd(mu0, X),
        optim=min_optim(mu0, X)
    )
})</pre>
```

Notice a considerable variability of the objective function at the local minima found: boxplot(as.data.frame(t(res)), horizontal=TRUE, col="white")

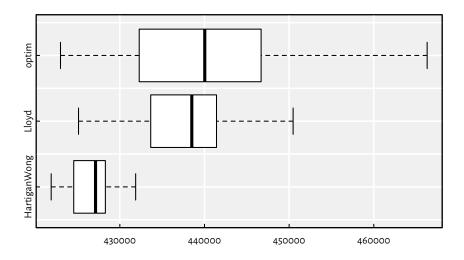


Figure 8.2: plot of chunk gendata5

```
##
          HartiganWong Lloyd optim
## Min.
               421889 425119.5 422989
              424663 433669.3 432446
## 1st Qu.
              427129 438502.2 440033
## Median
## Mean
               426557 438075.0 440635
## 3rd Qu.
                428243 441381.3 446614
## Max.
                431869 450469.7 466303
## sd
                  2301
                         5709.3 10888
```

Of course, we are interested in the smallest value of the objective, because we're trying to pinpoint the global minimum.

```
print(apply(res, 1, min))
```

##	HartiganWong	Lloyd	optim
##	421889	425119	422989

The Hartigan-Wong algorithm (the default one in kmeans()) is the most reliable one of the three:

- it gives the best solution (low bias)
- the solutions have the lowest degree of variability (low variance)
- it is the fastest:

```
library("microbenchmark")
set.seed(123)
mu0 <- X[sample(nrow(X), K),]
summary(microbenchmark(
    HartiganWong=min_HartiganWong(mu0, X),
    Lloyd=min_Lloyd(mu0, X),
    optim=min_optim(mu0, X),
    times=10
), unit="relative")</pre>
```

##	ехрг	min	lq	mean	median	uq			
## 1	HartiganWong	1.0914	1.1464	1.1718	1.1764	1.2848			
## 2	Lloyd	1.0000	1.0000	1.0000	1.0000	1.0000			
## 3	optim	1611.1920	1606.1912	1537.1444	1591.3588	1570.4874			
##	## max neval								
## 1	1.1449	10							
## 2	1.0000	10							
## 3	1316.5149	10							
<pre>print(min(res))</pre>									
## [1] 421889									

Is it the global minimum?

We don't know, we just didn't happen to find anything better (yet).

Did we put enough effort to find it?

Well, maybe. We can try more random restarts:

```
res_tried_very_hard <- kmeans(X, K, nstart=100000, iter.max=10000)$centers
print(get_loss(res_tried_very_hard, X))</pre>
```

[1] 421889 Is it good enough?

> It depends what we'd like to do with this. Does it make your boss happy? Does it generate revenue? Does it help solve any other problem? Is it useful anyhow? Are you really looking for the global minimum?

8.2 Genetic Algorithms

8.2.1 Introduction

What if our optimisation problem cannot be solved reliably with gradient-based methods like those in optim() and we don't have any custom solver for the task at hand?

There are a couple of useful metaheuristics in the literature that can serve this purpose.

Most of them rely on clever randomised search.

They are slow to run and don't guarantee anything, but yet they still might be useful – some claim that **a** solution is better than no solution at all.

There is a wide class of **nature-inspired** algorithms (that traditionally belong to the subfield of AI called *computational intelligence* or *soft computing*); see, e.g, (Simon 2013):

• evolutionary algorithms – inspired by the principle of natural selection

maintain a population of candidate solutions, let the "fittest" combine with each other to generate new "offspring" solutions.

• swarm algorithms

maintain a herd of candidate solutions, allow them to "explore" the environment, "communicate" with each other in order to seek the best spot to "go to".

For example:

- ant colony
- bees
- cuckoo search
- particle swarm
- krill herd
- other metaheuristics:
 - harmony search
 - memetic algorithm
 - firefly algorithm

All of these sound fancy, but the general ideas behind them are pretty simple.

244

8.2.2 Overview of the Method

Genetic algorithms (GAs) are amongst the most popular evolutionary approaches.

They are based on Charles Darwin's work on evolution by natural selection; first proposed by John Holland in the 1960s.

See (Goldberg, 1989) for a comprehensive overview and (Simon, 2013) for extensions.

Here is the general idea of a GA (there might be many) to minimise a given objective/loss function *f* over a given domain *D*.

- 1. Generate a random initial population of individuals n_{pop} points in *D*, e.g., $n_{pop} = 32$
- 2. Repeat until some convergence criterion is not met:
 - a. evaluate the fitness of each individual (the smaller the loss, the greater its fitness)
 - b. select the pairs of the individuals for reproduction, the fitter should be selected more eagerly
 - c. apply crossover operations to create offspring
 - d. slightly mutate randomly selected individuals
 - e. replace the old population with the new one

8.2.3 Example Implementation - GA for K-means

```
Initial setup:
```

set.seed(123)

```
# simulation parameters:
npop <- 32
niter <- 100
# randomly generate an initial population of size `npop`:
pop <- lapply(1:npop, function(i) X[sample(nrow(X), K),])
# evaluate loss for each individual:
cur_loss <- sapply(pop, get_loss, X)
cur_best_loss <- min(cur_loss)
best_loss <- cur_best_loss</pre>
```

Each individual in the population is just the set of K candidate cluster centres represented as a matrix in $\mathbb{R}^{K \times p}$.

Let's assume that the loss for each individual should be a function of the rank of the objective function's value (smallest objective/loss == highest rank/utility/fitness == best fit).

For the crossover, we will sample pairs of individuals with probabilities inversely proportional to their losses.

```
selection <- function(cur_loss) {
    npop <- length(cur_loss)
    probs <- rank(-cur_loss)
    probs <- probs/sum(probs)
    left <- sample(npop, npop, replace=TRUE, prob=probs)
    right <- sample(npop, npop, replace=TRUE, prob=probs)
    cbind(left, right)
}</pre>
```

An example crossover combines each cluster centre in such a way that we take a few coordinates of the "left" parent and the remaining ones from the "right" parent:

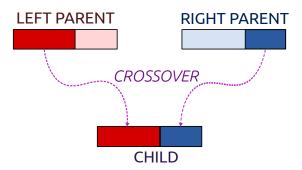


Figure 8.3: Crossover

```
crossover <- function(pop, pairs, K, p) {
    old_pop <- pop
    pop <- pop[pairs[,2]]
    for (j in 1:length(pop)) {
        wh <- sample(p-1, K, replace=TRUE)
        for (l in 1:K)
            pop[[j]][l,1:wh[l]] <-
                 old_pop[[pairs[j,1]]][l,1:wh[l]]
        }
        pop
}</pre>
```

Mutation (occurring with a very small probability) substitutes some cluster centre with a random vector from the input dataset.

```
mutate <- function(pop, X, K) {
    for (j in 1:length(pop)) {
        if (runif(1) < 0.025) {
            szw <- sample(1:K, 1)
            pop[[j]][szw,] <- X[sample(nrow(X), length(szw)),]
        }
    }
    pop
}</pre>
```

We also need a function that checks if the new cluster centres aren't too far away from the input points.

If it happens that we have empty clusters, our solution is degenerate and we must correct it.

All "bad" cluster centres will be substituted with randomly chosen points from **X**.

Moreover, we will recompute the cluster centres as the componentwise arithmetic mean of the closest points, just like in Lloyd's algorithm, to speed up convergence.

```
recompute_mus <- function(pop, X, K) {</pre>
  for (j in 1:length(pop)) {
    # get nearest cluster centres for each point:
    memb <- get.knnx(pop[[j]], X, 1)$nn.index</pre>
    sz <- tabulate(memb, K) # number of points in each cluster</pre>
    # if there are empty clusters, fix them:
    szw <- which(sz==0)</pre>
    if (length(szw)>0) { # random points in X will be new cluster centres
        pop[[j]][szw,] <- X[sample(nrow(X), length(szw)),]</pre>
        memb <- FNN::get.knnx(pop[[j]], X, 1)$nn.index</pre>
        sz <- tabulate(memb, K)</pre>
    }
    # recompute cluster centres - componentwise average:
    pop[[j]][,] <- 0
    for (l in 1:nrow(X))
        pop[[j]][memb[l],] <- pop[[j]][memb[l],]+X[l,]</pre>
    pop[[j]] <- pop[[j]]/sz</pre>
  }
  рор
}
```

We are ready to build our genetic algorithm to solve the K-means clustering problem:

```
for (i in 1:niter) {
    pairs <- selection(cur_loss)
    pop <- crossover(pop, pairs, K, p)
    pop <- mutate(pop, X, K)
    pop <- recompute_mus(pop, X, K)
    # re-evaluate losses:
    cur_loss <- sapply(pop, get_loss, X)
    cur_best_loss <- min(cur_loss)
    # give feedback on what's going on:
    if (cur_best_loss < best_loss) {
        best_loss <- cur_best_loss
        best_mu <- pop[[which.min(cur_loss)]]
        cat(sprintf("%5d: f_best=%10.5f\n", i, best_loss))
    }
}</pre>
```

```
## 1: f_best=435638.52165
## 2: f_best=428808.89706
## 4: f_best=428438.45125
## 6: f_best=422277.99136
## 8: f_best=421889.46265
print(get_loss(best_mu, X))
## [1] 421889
print(get_loss(res_tried_very_hard, X))
## [1] 421889
```

It works! :)

8.3 Outro

8.3.1 Remarks

For any $p \ge 1$, the search space type determines the problem class:

- $\mathbb{D} \subseteq \mathbb{R}^p$ – continuous optimisation

In particular:

- $\mathbb{D} = \mathbb{R}^p$ continuous unconstrained
- $\mathbb{D} = [a_1, b_1] \times \cdots \times [a_n, b_n]$ continuous with box constraints

- constrained with *k* linear inequality constraints

$$\begin{cases} a_{1,1}x_1 + \dots + a_{1,p}x_p &\leq b_1 \\ \vdots \\ a_{k,1}x_1 + \dots + a_{k,p}x_p &\leq b_k \end{cases}$$

However, there are other possibilities as well:

• $\mathbb{D} \subseteq \mathbb{Z}^p$ (Z – the set of integers) – **discrete optimisation**

In particular:

- $\mathbb{D} = \{0, 1\}^p - 0 - 1$ optimisation (hard!)

- $\mathbb D$ is finite (but perhaps large, its objects can be enumerated) – combination optimisation

For example:

- \mathbb{D} = all possible routes between two points on a map.

These optimisation tasks tend to be much harder than the continuous ones.

Genetic algorithms might come in handy in such cases.

Specialised methods, customised to solve a specific problem (like Lloyd's algorithm) will often outperform generic ones (like SGD, genetic algorithms) in terms of speed and reliability.

All in all, we prefer a suboptimal solution obtained by means of heuristics to no solution at all.

Problems that you could try solving with GAs include variable selection in multiple regression – finding the subset of features optimising the AIC (this is a hard problem to and forward selection was just a simple greed heuristic).

Other interesting algorithms:

- Hill Climbing (a simple variation of GD with no gradient use)
- Simulated annealing
- CMA-ES

- Tabu search
- Particle swarm optimisation (e.g, hydroPSO package)
- Artificial bee/ant colony optimisation
- Cuckoo Search
- Differential Evolution (e.g., DEoptim package)

8.3.2 Further Reading

Recommended further reading:

• (Goldberg 1989)

Other:

• (Simon 2013)

See also package GA.

250

9

Recommender Systems (*)

These lecture notes are distributed in the hope that they will be useful. Any bug reports are appreciated.

9.1 Introduction

Recommender (recommendation) systems aim to predict the rating a *user* would give to an *item*.

For example:

- playlist generators (Spotify, YouTube, Netflix, ...),
- content recommendations (Facebook, Instagram, Twitter, Apple News, ...),
- product recommendations (Amazon, Alibaba, ...).

Implementing recommender systems, according to (Ricci et al. 2011), might:

- increase the number of items sold,
- increase users' satisfaction,
- increase users' fidelity,
- allow a company to sell more diverse items,
- allow to better understand what users want.

Exercise 9.1 Think of the last time you found some recommendation useful.

They can also increase the users' frustration.

Exercise 9.2 Think of the last time you found a recommendation useless and irritating. What might be the reasons why you have been provided with such a suggestion?

9.1.1 The Netflix Prize

In 2006 Netflix (back then a DVD rental company) released one of the most famous benchmark sets for recommender systems, which helped boost the research on algorithms in this field.

See https://www.kaggle.com/netflix-inc/netflix-prize-data; data archived at https://web.archive.org/web/20090925184737/http://archive.ics.uci.edu/ml/datas ets/Netflix+Prize and https://archive.org/details/nf_prize_dataset.tar

The dataset consists of:

- 480,189 users
- 17,770 movies
- 100,480,507 ratings in the training sample:
 - MovieID
 - CustomerID
 - Rating from 1 to 5
 - Title
 - YearOfRelease from 1890 to 2005
 - Date of rating in the range 1998-11-01 to 2005-12-31

The *quiz set* consists of 1,408,342 ratings and it was used by the competitors to assess the quality of their algorithms and compute the leaderboard scores.

Root mean squared error (RMSE) of predicted vs. true rankings was chosen as a performance metric.

The *test set* of 1,408,789 ratings (not make publicly available) was used to determine the winner.

On 21 September 2009, the grand prize of US\$1,000,000 was given to the BellKor's Pragmatic Chaos team which improved over the Netflix's *Cinematch* algorithm by 10.06%, achieving the winning RMSE of 0.8567 on the test subset.

9.1.2 Main Approaches

Current recommender systems are quite complex and use a fusion of various approaches, also those based on external knowledge bases.

However, we may distinguish at least two core approaches, see (Ricci et al. 2011) for more:

• *Collaborative Filtering* is based on the assumption that if two people interact with the same product, they're likely to have other interests in common as well.

252

John likes sushi. Mary hasn't tried sushi yet. It seems they might have similar tastes, so we recommend that Mary should give sushi a try.

• *Content-based Filtering* builds users' profiles that represent information about what kind of products they like.

We have discovered that John likes fruit but dislikes vegetables. An orange is a fruit (an item similar to those he liked in the past) with which John is yet to interact. Thus, it is suggested that John should give it a try.

Jim Bennett, at that time the vice president of recommendation systems at Netflix on the idea behind the original Cinematch algorithm (see https://www.technology review.com/s/406637/the-1-million-netflix-challenge/ and https://web.archive.or g/web/20070821194257/http://www.netflixprize.com/faq):

First, you collect 100 million user ratings for about 18,000 movies. Take any two movies and find the people who have rated both of them. Then look to see if the people who rate one of the movies highly rate the other one highly, if they liked one and not the other, or if they didn't like either movie. Based on their ratings, Cinematch sees whether there's a correlation between those people. Now, do this for all possible pairs of 65,000 movies.

Exercise 9.3 Is the above an example of the collaborative or context-based filtering?

9.1.3 Formalism

Let $\mathcal{U} = \{U_1, \dots, U_n\}$ denote the set of *n* users.

Let $\mathcal{I} = \{I_1, \dots, I_p\}$ denote the set of p items.

Let $\mathbf{R} \in \mathbb{R}^{n \times p}$ be a user-item matrix such that:

$$r_{u,i} = \begin{cases} r & \text{if the } u\text{-th user ranked the } i\text{-th item as } r > 0 \\ 0 & \text{if the } u\text{-th user hasn't interacted with the } i\text{-th item yet} \end{cases}$$

Remark. Note that 0 is used to denote a missing value (NA) here.

In particular, we can assume:

- $r_{u,i} \in \{0, 1, \dots, 5\}$ (ratings on the scale 1–5 or no interaction)
- $r_{u,i} \in \{0, 1\}$ ("Like" or no interaction)

The aim of an recommender system is to predict the rating $\hat{r}_{u,i}$ that the *u*-th user would give to the *i*-th item provided that currently $r_{u,i} = 0$.

9.2 Collaborative Filtering

9.2.1 Example

	Apple	Banana	Sushi	Spinach	Orange
Anne	1	5	5		1
Beth	1	1	5	5	1
John	5	5		1	
Kate	1	1	5	5	1
Mark	5	5	1	1	5
Sara	?	5		?	5

In **user-based collaborative filtering**, we seek users with similar preference profiles/rating patters.

"User A has similar behavioural patterns as user B, so A should suggested with what B likes."

In **item-based collaborative filtering**, we seek items with similar (dis)likeability structure.

"Users who (dis)liked X also (dis)liked Y".

Exercise 9.4 Will Sara enjoy her spinach? Will Sara enjoy her apple?

An example **R** matrix in R:

```
R <- matrix(
   c(
    1, 5, 5, 0, 1,
    1, 1, 5, 5, 1,
    5, 5, 0, 1, 0,
    1, 1, 5, 5, 1,
    5, 5, 1, 1, 5,
    0, 5, 0, 0, 5
   ), byrow=TRUE, nrow=6, ncol=5,
   dimnames=list(
       c("Anne", "Beth", "John", "Kate", "Mark", "Sara"),
       c("Apple", "Banana", "Sushi", "Spinach", "Orange")
   )
)
R
       Apple Banana Sushi Spinach Orange
##
           1
                 5
                       5
                               0
## Anne
                                     1
## Beth
           1
                 1
                       5
                               5
                                     1
## John
           5
                 5
                      0
                               1
                                     0
                1
## Kate
                      5
                             5
          1
                                     1
          5
                5
## Mark
                      1
                              1
                                     5
```

9.2.2 Similarity Measures

0

5

0

Sara

Assuming **a**, **b** are two sequences of length k (in our setting, k is equal to either n or p), let S be the following similarity measure between two rating vectors:

5

0

$$S(\mathbf{a}, \mathbf{b}) = \frac{\sum_{i=1}^{k} a_i b_i}{\sqrt{\sum_{i=1}^{k} a_i^2} \sqrt{\sum_{i=1}^{k} b_i^2}}$$

cosim <- function(a, b) sum(a*b)/sqrt(sum(a^2)*sum(b^2))</pre>

We call it the **cosine similarity**. We have $S(\mathbf{a}, \mathbf{b}) \in [-1, 1]$, where we get 1 for two identical elements. Similarity of 0 is obtained for two unrelated ("orthogonal") vectors. For nonnegative sequences, negative similarities are not generated.

(*) Another frequently considered similarity measure is a version of the Pearson correlation coefficient that ignores all 0-valued observations, see also the use argument to the cor() function.

9.2.3 User-Based Collaborative Filtering

User-based approaches involve comparing each user against every other user (pairwise comparisons of the rows in **R**). This yields a similarity degree between the *i*-th and the *j*-th user:

```
s_{i,i}^{U} = S(\mathbf{r}_{i,\cdot}, \mathbf{r}_{j,\cdot}).
```

```
SU <- matrix(0, nrow=nrow(R), ncol=nrow(R),</pre>
    dimnames=dimnames(R)[c(1,1)]) # and empty n*n matrix
for (i in 1:nrow(R)) {
    for (j in 1:nrow(R)) {
        SU[i,j] <- cosim(R[i,], R[j,])</pre>
    }
}
round(SU, 2)
        Anne Beth John Kate Mark Sara
##
## Anne 1.00 0.61 0.58 0.61 0.63 0.59
## Beth 0.61 1.00 0.29 1.00 0.39 0.19
## John 0.58 0.29 1.00 0.29 0.81 0.50
## Kate 0.61 1.00 0.29 1.00 0.39 0.19
## Mark 0.63 0.39 0.81 0.39 1.00 0.81
## Sara 0.59 0.19 0.50 0.19 0.81 1.00
```

In order to obtain the previously unobserved rating $\hat{r}_{u,i}$ using the user-based approach, we typically look for the *K* most similar users and aggregate their corresponding scores (for some $K \ge 1$).

More formally, let $\{U_{v_1}, \dots, U_{v_K}\} \in \mathcal{U} \setminus \{U_u\}$ be the set of users maximising $s_{u,v_1}^U, \dots, s_{u,v_K}^U$ and having $r_{v_1,i}, \dots, r_{v_K,i} > 0$. Then:

$$\hat{r}_{u,i} = \frac{1}{K} \sum_{\ell=1}^{K} r_{v_{\ell},i}.$$

Remark. The arithmetic mean can be replaced with, e.g., the more or a weighted arithmetic mean where weights are proportional to $s_{u,v_{\rm F}}^{U}$

```
Recommender Systems (*)
```

This is very similar to the *K*-nearest neighbour heuristic!

```
K <- 2
(sim <- order(SU["Sara",], decreasing=TRUE))
## [1] 6 5 1 3 2 4
# sim gives the indices of people in decreasing order
# of similarity to Sara:
dimnames(R)[[1]][sim] # the corresponding names
## [1] "Sara" "Mark" "Anne" "John" "Beth" "Kate"
# Remove those who haven't tried Spinach yet (including Sara):
sim <- sim[ R[sim, "Spinach"]>0 ]
dimnames(R)[[1]][sim]
## [1] "Mark" "John" "Beth" "Kate"
# aggregate the Spinach ratings of the K most similar people:
mean(R[sim[1:K], "Spinach"])
```

[1] 1

9.2.4 Item-Based Collaborative Filtering

Item-based schemes rely on pairwise comparisons between the items (columns in **R**). Hence, a similarity degree between the *i*-th and the *j*-th item is given by:

```
s_{i,j}^I = S(\mathbf{r}_{\cdot,i}, \mathbf{r}_{\cdot,j}).
```

```
SI <- matrix(0, nrow=ncol(R), ncol=ncol(R),</pre>
    dimnames=dimnames(R)[c(2,2)]) # an empty p*p matrix
for (i in 1:ncol(R)) {
   for (j in 1:ncol(R)) {
       SI[i,j] <- cosim(R[,i], R[,j])</pre>
    }
}
round(SI, 2)
##
          Apple Banana Sushi Spinach Orange
           1.00 0.78 0.32
## Apple
                                0.38
                                       0.53
           0.78 1.00 0.45
## Banana
                                0.27
                                       0.78
## Sushi
           0.32 0.45 1.00
                                0.81
                                       0.32
## Spinach 0.38 0.27 0.81
                                1.00
                                       0.29
## Orange
           0.53
                  0.78 0.32
                                0.29
                                       1.00
```

In order to obtain the previously unobserved rating $\hat{r}_{u,i}$ using the item-based ap-

proach, we typically look for the K most similar items and aggregate their corresponding scores (for some $K \ge 1$)

More formally, let $\{I_{j_1}, \dots, I_{j_K}\} \in \mathcal{I} \ \{I_i\}$ be the set of items maximising $s_{i,j_1}^I, \dots, s_{i,j_K}^I$ and having $r_{u,j_1}, \dots, r_{u,j_K} > 0$. Then:

$$\hat{r}_{u,i} = \frac{1}{K} \sum_{\ell=1}^{K} r_{u,j_{\ell}}.$$

Remark. Similarly to the previous case, the arithmetic mean can be replaced with, e.g., the mode or a weighted arithmetic mean where weights are proportional to $s_{i,j_{e}}^{I}$.

```
K <- 2
(sim <- order(SI["Apple",], decreasing=TRUE))
```

```
## [1] 1 2 5 4 3
```

```
# sim gives the indices of items in decreasing order
# of similarity to Apple:
dimnames(R)[[2]][sim] # the corresponding item types
```

```
## [1] "Apple" "Banana" "Orange" "Spinach" "Sushi"
```

```
# Remove these which Sara haven't tried yet (e.g., Apples):
sim <- sim[ R["Sara", sim]>0 ]
dimnames(R)[[2]][sim]
```

```
## [1] "Banana" "Orange"
# aggregate Sara's ratings of the K most similar items:
mean(R["Sara", sim[1:K]])
```

[1] 5

9.3 Exercise: The MovieLens Dataset (*)

9.3.1 Dataset

Let's make a few recommendations based on the MovieLens-9/2018-Small dataset available at https://grouplens.org/datasets/movielens/latest/, see also https://movielens.org/ and (Harper & Konstan 2015).

The dataset consists of ca. 100,000 ratings to 9,000 movies by 600 users. It was last updated on September 2018.

This is already a pretty large dataset! We might run into problems with memory usage and high run-time.

```
movies <- read.csv("datasets/ml-9-2018-small/movies.csv",</pre>
    comment.char="#")
head(movies, 4)
##
     movieId
                                  title
                      Toy Story (1995)
## 1
           1
## 2
           2
                        Jumanji (1995)
           3 Grumpier Old Men (1995)
## 3
## 4
           4 Waiting to Exhale (1995)
##
                                            genres
## 1 Adventure|Animation|Children|Comedy|Fantasy
                       Adventure | Children | Fantasy
## 2
## 3
                                    Comedy | Romance
## 4
                              Comedy | Drama | Romance
nrow(movies)
## [1] 9742
ratings <- read.csv("datasets/ml-9-2018-small/ratings.csv",
    comment.char="#")
head(ratings, 4)
##
     userId movieId rating timestamp
## 1
          1
                   1
                          4 964982703
                   3
## 2
          1
                          4 964981247
## 3
          1
                   6
                          4 964982224
## 4
          1
                  47
                          5 964983815
nrow(ratings)
## [1] 100836
table(ratings$rating)
##
##
     0.5
              1
                  1.5
                          2
                               2.5
                                       3
                                           3.5
                                                    4
                                                        4.5
                                                                 5
    1370
          2811
                1791 7551 5550 20047 13136 26818 8551 13211
##
```

9.3.2 Data Cleansing

movieIds should be re-encoded, as not every film is mentioned/rated in the database. We will re-map the movieIds to consecutive integers.

```
# the list of all rated movieIds:
movieId2 <- unique(ratings$movieId)</pre>
```

```
# max user Id (these could've been cleaned up too):
(n <- max(ratings$userId))
## [1] 610
# number of unique movies:
(p <- length(movieId2))
## [1] 9724
# remove unrated movies:
movies <- movies[movies$movieId %in% movieId2, ]
# we'll map movieId2[i] to i for each i=1,...,p:
movies$movieId <- match(movies$movieId, movieId2)
ratings$movieId <- match(ratings$movieId, movieId2)
# order the movies by the new movieId so that
# the movie with Id==i is in the i-th row:
movies <- movies[order(movies$movieId),]
stopifnot(all(movies$movieId == 1:p)) # sanity check
```

We will use a sparse matrix data type (from R package Matrix) to store the ratings data, $\mathbf{R} \in \mathbb{R}^{n \times p}$.

Remark. Sparse matrices contain many zeros. Instead of storing all the np = 5931640 elements, only the lists of non-zero ones are saved, 100836 values in total. This way, we might save a lot of memory. The drawback is that, amongst others, random access to the elements in a sparse matrix takes more time.

```
library("Matrix")
R <- Matrix(0.0, sparse=TRUE, nrow=n, ncol=p)
# This is a vectorised operation;
# it is faster than a for loop over each row
# in the ratings matrix:
R[cbind(ratings$userId, ratings$movieId)] <- ratings$rating</pre>
```

Let's preview a few first rows and columns:

```
R[1:6, 1:18]
```

[5,] 4 . . . 4 . . 4 5 2 ## [6,] . 5 4 4 1 . . 5 4 . 3 4 . 3 . . 2 5

9.3.3 Item-Item Similarities

To recall, the cosine similarity between $\mathbf{r}_{.,i}$, $\mathbf{r}_{.,i} \in \mathbb{R}^n$ is given by:

$$S_{i,j}^{I} = S_{C}(\mathbf{r}_{\cdot,i}, \mathbf{r}_{\cdot,j}) = \frac{\sum_{k=1}^{n} r_{k,i} r_{k,j}}{\sqrt{\sum_{k=1}^{n} r_{k,i}^{2}} \sqrt{\sum_{k=1}^{n} r_{k,j}^{2}}}$$

In vector/matrix algebra notation, this is:

$$s_{i,j}^{I} = S_{C}(\mathbf{r}_{\cdot,i}, \mathbf{r}_{\cdot,j}) = \frac{\mathbf{r}_{\cdot,i}^{T} \mathbf{r}_{\cdot,j}}{\sqrt{\mathbf{r}_{\cdot,i}^{T} \mathbf{r}_{\cdot,i}} \sqrt{\mathbf{r}_{\cdot,j}^{T} \mathbf{r}_{\cdot,j}}}$$

As $\mathbf{R} \in \mathbb{R}^{n \times p}$, we can "almost" compute all the $p \times p$ cosine similarities at once by applying:

$$\mathbf{S}^{I} = \frac{\mathbf{R}^{T}\mathbf{R}}{\mathbf{R}}$$

Cosine similarities for item-item comparisons:

```
norms <- as.matrix(sqrt(colSums(R^2)))
Rx <- as.matrix(crossprod(R, R))
SI <- Rx/tcrossprod(norms)
SI[is.nan(SI)] <- 0 # there were some divisions by zero</pre>
```

Remark. crossprod(A,B) gives $\mathbf{A}^T \mathbf{B}$ and tcrossprod(A,B) gives $\mathbf{A}\mathbf{B}^T$.

9.3.4 Example Recommendations

```
recommend <- function(i, K, SI, movies) {
    # get K most similar movies to the i-th one
    ms <- order(SI[i,], decreasing=TRUE)
    data.frame(
        Title=movies$title[ms[1:K]],
        SIC=SI[i,ms[1:K]]
    )
}</pre>
```

movies\$title[1215]

[1] "Monty Python's The Meaning of Life (1983)"
recommend(1215, 10, SI, movies)

```
##
                                                  Title
                                                             SIC
## 1
             Monty Python's The Meaning of Life (1983) 1.00000
                   Monty Python's Life of Brian (1979) 0.61097
## 2
                Monty Python and the Holy Grail (1975) 0.51415
## 3
      House of Flying Daggers (Shi mian mai fu) (2004) 0.49322
## 4
## 5
          Hitchhiker's Guide to the Galaxy, The (2005) 0.45482
                          Bowling for Columbine (2002) 0.45051
## 6
## 7
                               Shaun of the Dead (2004) 0.44566
                     0 Brother, Where Art Thou? (2000) 0.44541
## 8
## 9
                                     Ghost World (2001) 0.44416
## 10
                               Full Metal Jacket (1987) 0.44285
```

movies\$title[1]

[1] "Toy Story (1995)"

recommend(1, 10, SI, movies)

```
Title
                                                              SIC
##
                                        Toy Story (1995) 1.00000
## 1
                                      Toy Story 2 (1999) 0.57260
## 2
                                    Jurassic Park (1993) 0.56564
## 3
                   Independence Day (a.k.a. ID4) (1996) 0.56426
## 4
## 5
              Star Wars: Episode IV - A New Hope (1977) 0.55739
                                     Forrest Gump (1994) 0.54710
## 6
## 7
                                   Lion King, The (1994) 0.54115
      Star Wars: Episode VI - Return of the Jedi (1983) 0.54109
## 8
## 9
                             Mission: Impossible (1996) 0.53891
                                    Groundhog Day (1993) 0.53417
## 10
```

...and so on.

9.3.5 Clustering

All our ratings are $r_{i,j} \ge 0$, therefore the cosine similarity is $s_{i,j}^I \ge 0$. Moreover, it holds $s_{i,j}^I \le 1$. Thus, a cosine similarity matrix can be turned into a dissimilarity matrix:

```
DI <- 1.0-SI
DI[DI<0] <- 0.0 # account for numeric inaccuracies
DI <- as.dist(DI)
```

```
Recommender Systems (*)
```

This enables us to perform, e.g., the cluster analysis of items:

library("genie")

```
## Loading required package: genieclust
h <- hclust2(DI)
plot(h, labels=FALSE, ann=FALSE); box()
```

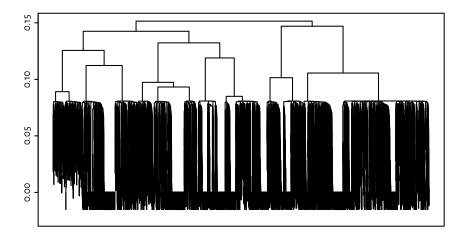


Figure 9.1: Cluster dendrogram for the movies

A 14-partition might look nice, let's give it a try:

c <- cutree(h, k=14)</pre>

Example movies in the 3rd cluster:

Bottle Rocket (1996), Clerks (1994), Star Wars: Episode IV - A New Hope (1977), Swingers (1996), Monty Python's Life of Brian (1979), E.T. the Extra-Terrestrial (1982), Monty Python and the Holy Grail (1975), Star Wars: Episode V - The Empire Strikes Back (1980), Princess Bride, The (1987), Raiders of the Lost Ark (Indiana Jones and the Raiders of the Lost Ark) (1981), Star Wars: Episode VI - Return of the Jedi (1983), Blues Brothers, The (1980), Duck Soup (1933), Groundhog Day (1993), Back to the Future (1985), Young Frankenstein (1974), Indiana Jones and the Last Crusade (1989), Grosse Pointe Blank (1997), Austin Powers: International Man of Mystery (1997), Men in Black (a.k.a. MIB) (1997)

The definitely have something in common!

Example movies in the 1st cluster:

Toy Story (1995), Heat (1995), Seven (a.k.a. Se7en) (1995), Usual Suspects, The (1995),

From Dusk Till Dawn (1996), Braveheart (1995), Rob Roy (1995), Desperado (1995), Billy Madison (1995), Dumb & Dumber (Dumb and Dumber) (1994), Ed Wood (1994), Pulp Fiction (1994), Stargate (1994), Tommy Boy (1995), Clear and Present Danger (1994), Forrest Gump (1994), Jungle Book, The (1994), Mask, The (1994), Fugitive, The (1993), Jurassic Park (1993)

... and so forth.

9.4 Outro

9.4.1 Remarks

Good recommender systems are perfect tools to increase the revenue of any usercentric enterprise.

Not a single algorithm, but an ensemble (a proper combination) of different approaches is often used in practice, see the Further Reading section below for the detailed information of the Netflix Prize winners.

Recommender systems are an interesting fusion of the techniques we have already studied – linear models, K-nearest neighbours etc.

Building recommender systems is challenging, because data is large yet often sparse. For instance, the ratio of available ratings vs. all possible user-item valuations for the Netflix Prize (obviously, it is just a sample of the complete dataset that Netflix has) is equal to:

```
100480507/(480189*17770)
```

[1] 0.011776

A *sparse matrix* (see R package Matrix) data structure is often used for storing of and computing over such data effectively.

Note that some users are *biased* in the sense that they are more critical or enthusiastic than average users.

Exercise 9.5 Is 3 stars a "bad", "fair enough" or "good" rating for you? Would you go to a bar/restaurant ranked 3.0 by you favourite Maps app community?

It is particularly challenging to predict the preferences of users that cast few ratings, e.g., those who just signed up (*the cold start problem*).

"Hill et al. [1995] have shown that users provide inconsistent ratings when asked to rate the same movie at different times. They suggest

264

that an algorithm cannot be more accurate than the variance in a user's ratings for the same item." (Herlocker et al. 2004: p. 6)

It is good to take into account the temporal (time-based) characteristics of data as well as external knowledge (e.g., how long ago a rating was cast, what is a film's genre).

The presented approaches are vulnerable to attacks – bots may be used to promote or inhibit selected items.

9.4.2 Further Reading

Recommended further reading: (Herlocker et al. 2004), (Ricci et al. 2011), (Lü et al. 2012), (Harper & Konstan 2015). See also the Netflix prize winners: (Koren 2009), (Töscher et al. 2009), (Piotte & Chabbert 2009). Also don't forget to take a look at the R package recommenderlab (amongst others).

Notation Convention

Abbreviations

a.k.a. == also known as

w.r.t. == with respect to

s.t. == such that

iff == if and only if

e.g. == for example (Latin: *exempli gratia*)

i.e. == that is (Latin: *id est*)

etc. == and so forth (Latin: *et cetera*)

AI == artificial intelligence

API == application programming interface

GA == genetic algorithm

GD == gradient descent

GLM == generalised linear model

ML == machine learning

NN == neural network

SGD == stochastic gradient descent

IDE = integrated development environment

Notation Convention – Logic and Set Theory

 \forall – for all

∃ – exists

By writing $x \in \{a, b, c\}$ we mean that "x is in a set that consists of a, b and c" or "x is either a, b or c"

 $A \subseteq B$ – set A is a subset of set B (every element in A belongs to $B, x \in A$ implies that $x \in B$)

- $A \cup B$ union (sum) of two sets, $x \in A \cup B$ iff $x \in A$ or $x \in B$
- $A \cap B$ intersection (sum) of two sets, $x \in A \cap B$ iff $x \in A$ and $x \in B$
- A B difference of two sets, $x \in A$ B iff $x \in A$ and $x \notin B$
- $A \times B$ Cartesian product of two sets, $A \times B = \{(a, b) : a \in A, b \in B\}$

 $A^p = A \times A \times \dots \times A$ (*p* times) for any *p*

Notation Convention – Symbols

X, Y, A, I, C – bold (I use it for denoting vectors and matrices)

 X, Y, A, I, \mathbb{C} – blackboard bold (I sometimes use it for sets)

 $\mathcal{X}, \mathcal{Y}, \mathcal{A}, \mathcal{I}, \mathcal{C}$ – calligraphic (I use it for set families = sets of sets)

 $X, x, \mathbf{X}, \mathbf{x} - \text{inputs}$ (usually)

 $Y, y, \mathbf{Y}, \mathbf{y} - \text{outputs}$

 $\hat{Y}, \hat{y}, \hat{\mathbf{Y}}, \hat{\mathbf{Y}} - \text{predicted outputs (usually)}$

- X independent/explanatory/predictor variable
- Y dependent/response/predicted variable
- $\mathbb R$ the set of real numbers, $\mathbb R=(-\infty,\infty)$
- \mathbb{N} the set of natural numbers, $\mathbb{N} = \{1, 2, 3, ... \}$
- \mathbb{N}_0 the set of natural numbers including zero, $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$

 \mathbb{Z} – the set of integer numbers, $\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\}$

[0,1] – the unit interval

(a, b) – an open interval; $x \in (a, b)$ iff a < x < b for some a < b

[a, b] – a closed interval; $x \in [a, b]$ iff $a \le x \le b$ for some $a \le b$

Notation Convention – Vectors and Matrices

 $\mathbf{x} = (x_1, ..., x_n)$ – a sequence of *n* elements (*n*-ary sequence/vector) if it consists of real numbers, we write $\mathbf{x} \in \mathbb{R}^n$ $\mathbf{x} = [x_1 \ x_2 \ ... \ x_p]$ – a row vector, $\mathbf{x} \in \mathbb{R}^{1 \times p}$ (a matrix with 1 row) $\mathbf{x} = [x_1 \ x_2 \ ... \ x_n]^T$ – a column vector, $\mathbf{x} \in \mathbb{R}^{n \times 1}$ (a matrix with 1 column) $\mathbf{X} \in \mathbb{R}^{n \times p}$ – matrix with *n* rows and *p* columns

$$\mathbf{X} = \begin{bmatrix} x_{1,1} & x_{1,2} & \cdots & x_{1,p} \\ x_{2,1} & x_{2,2} & \cdots & x_{2,p} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n,1} & x_{n,2} & \cdots & x_{n,p} \end{bmatrix}$$

 $x_{i,j}$ – element in the *i*-th row, *j*-th column $\mathbf{x}_{i,\cdot}$ – the *i*-th row of \mathbf{X} $\mathbf{x}_{.,i}$ – the *j*-th column of \mathbf{X}

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_{1,\cdot} \\ \mathbf{x}_{2,\cdot} \\ \vdots \\ \mathbf{x}_{n,\cdot} \end{bmatrix} = \begin{bmatrix} \mathbf{x}_{\cdot,1} & \mathbf{x}_{\cdot,2} & \cdots & \mathbf{x}_{\cdot,p} \end{bmatrix}.$$

$$\mathbf{x}_{i,\cdot} = \begin{bmatrix} x_{i,1} & x_{i,2} & \cdots & x_{i,p} \end{bmatrix}.$$

$$\mathbf{x}_{\cdot,j} = \begin{bmatrix} x_{1,j} & x_{2,j} & \cdots & x_{n,j} \end{bmatrix}^T = \begin{bmatrix} x_{1,j} \\ x_{2,j} \\ \vdots \\ x_{n,j} \end{bmatrix},$$

^{*T*} denotes the matrix transpose; $\mathbf{B} = \mathbf{A}^T$ is a matrix such that $b_{i,j} = a_{j,i}$.

 $\|\mathbf{x}\| = \|\mathbf{x}\|_2 = \sqrt{\sum_{i=1}^n x_i^2}$ – the Euclidean norm

Notation Convention – Functions

 $f : X \to Y$ means that f is a function mapping inputs from set X (the domain of f) to elements of Y (the codomain)

 $x\mapsto x^2$ denotes a (inline) function mapping x to x^2 , equivalent to function(x) x^2 in R

 $\exp x = e^x -$ exponential function with base $e \simeq 2.718$

 $\log x - \text{natural logarithm (base } e)$

it holds $e^x = y$ iff $\log y = x$

 $\log ab = \log a + \log b$

 $\log a^c = c \log a$

 $\log a/b = \log a - \log b$

 $\log 1 = 0$

 $\log e = 1$ hence $\log e^x = x$

Notation Convention – Sums and Products

 $\sum_{i=1}^{n} x_i = x_1 + x_2 + \dots + x_n$ $\sum_{i=1,\dots,n} x_i - \text{the same}$ $\sum_{i \in \{1,\dots,n\}} x_i - \text{the same}$ note display (stand-alone) $\sum_{i=1}^{n} x_i \text{ vs text (in-line)} \sum_{i=1}^{n} x_i \text{ style}$

 $\prod_{i=1}^n x_i = x_1 x_2 \dots x_n$

Setting Up the R Environment

These lecture notes are distributed in the hope that they will be useful. Any bug reports are appreciated.

B.1 Installing R

R and Python are *the* languages of modern data science. The former is slightly more oriented towards data modelling, analysis and visualisation as well as statistical computing. It has a gentle learning curve, which makes is very suitable even for beginners – just like us!

R is available for Windows as well as MacOS, Linux and other Unix-like operating systems. It can be downloaded from the R project website, see https://www.r-proj ect.org/ (or installed through system-specific package repositories).

Remark. From now on we assume that you have installed the R environment.

B.2 Installing an IDE

As we wish to make our first steps with the R language as stress- and hassle-free as possible, let's stick to a very user-friendly development environment called RStudio, which can be downloaded from https://rstudio.com/products/rstudio/ (choose RStudio Desktop Open Source Edition).

Remark. There are of course many other options for working with R, both interactive and non-interactive, including Jupyter Notebooks (see https://irkernel.githu b.io/), dynamically generated reports (see https://yihui.org/knitr/options/) and plain shell scripts executed from a terminal. However, for now let's leave that to more advanced users.

B.3 Installing Recommended Packages

Once we get the above up and running, from within RStudio, we need to install a few packages which we're going to use during the course of this course. Execute the following commands in the R console (bottom-left Rstudio pane):

```
pkgs <- c("Cairo", "DEoptim", "fastcluster", "FNN", "genie",
      "genieclust", "gsl", "hydroPSO", "ISLR", "keras",
      "Matrix", "microbenchmark", "pdist", "RColorBrewer",
      "recommenderlab", "rpart", "rpart.plot", "rworldmap",
      "scatterplot3d", "stringi", "tensorflow", "tidyr",
      "titanic", "vioplot")
install.packages(pkgs)
```

What is more, in order to be able to play with neural networks, we will need some Python environment, for example the Anaconda Distribution Python 3.x, see https://www.anaconda.com/distribution/.

Remark. Do not download Python 2.7.

Installation instructions can be found at https://docs.anaconda.com/anaconda/i nstall/. This is required for the R packages tensorflow and keras, see https://tens orflow.rstudio.com/installation/. Once this is installed, execute the following R commands in the console:

library("tensorflow")
install_tensorflow()

B.4 First R Script in RStudio

Let's open RStudio and perform the following steps:

 Create a New Project where we will store all the scripts related to this book. Click File → New Project and then choose to start in a brand new working directory, in any location you like. Choose New Project as the project type.

From now on, we are assuming that the project name is LMLCR and the

project has been opened. All source files we create will be relative to the project directory.

2. Create a new R source file, File \rightarrow New File \rightarrow R Script. Save the file as, for example, sandbox_01.R.

The source editor (top left pane) behaves just like any other text editor. Standard keyboard shortcuts are available, such as CTRL+C and CTRL+V (Cmd+C and Cmd+V on MacOS) for copy and paste, respectively.

A list of keyboard shortcuts is available at https://support.rstudio.com/ hc/en-us/articles/200711853-Keyboard-Shortcuts

3. Input the following R code into the editor:

```
# My first R script
# This is a comment
# Another comment
# Everything from '#' to the end of the line
# is ignored by the R interpreter
print("Hello world") # prints a given character string
print(2+2) # evaluates the expression and prints the result
x <- seq(0, 10, length.out=100) # a new numeric vector
y <- x^2 # squares every element in x
plot(x, y, las=1, type="l") # plots y as a function of x</pre>
```

4. Execute the 5 above commands, line by line, by positioning the keyboard cursor accordingly and pressing Ctrl+Enter (Cmd+Return on MacOS).

Each time, the command will be copied to the console (bottom-left pane) and evaluated.

The last line generates a nice plot which will appear in the bottom-right pane.

While you learn, we recommend that you get used to writing your code in an R script and executing it just as we did above.

On a side note, you can execute (source) the whole script by pressing Ctrl+Shift+S (Cmd+Shift+S on MacOS).

С

Vector Algebra in R

These lecture notes are distributed in the hope that they will be useful. Any bug reports are appreciated.

This chapter is a step-by-step guide to vector computations in R. It also explains the basic mathematical notation around vectors.

You're encouraged to not only simply *read* the chapter, but also to execute yourself the R code provided. Play with it, do some experiments, get curious about how R works. Read the documentation on the functions you are calling, e.g., ?seq, ?sample and so on.

Technical and mathematical literature isn't belletristic. It requires *active (pro-active* even) thinking. Sometimes going through a single page can take an hour. Or a day. If you don't understand something, keep thinking, go back, ask yourself questions, take a look at other sources. This is not a *linear* process. This is what makes it fun and creative. To become a good programmer you need a lot of practice, there are no shortcuts. But the whole endeavour is worth the hassle!

C.1 Motivation

Vector and matrix algebra provides us with a convenient language for expressing computations on sequential and tabular data.

Vector and matrix algebra operations are supported by every major programming language – either natively (e.g., R, Matlab, GNU Octave, Mathematica) or via an additional library/package (e.g, Python with numpy, tensorflow, or pytorch; C++ with Eigen/Armadillo; C, C++ or Fortran with LAPACK).

By using matrix notation, we generate more concise and readable code.

For instance, given two vectors $\mathbf{x} = (x_1, \dots, x_n)$ and $\mathbf{y} = (y_1, \dots, y_n)$ like:

x <- c(1.5, 3.5, 2.3,-6.5) y <- c(2.9, 8.2,-0.1, 0.8)

Instead of writing:

```
s <- 0
n <- length(x)
for (i in 1:n)
        s <- s + (x[i]-y[i])^2
sqrt(s)</pre>
```

[1] 9.1159

to mean:

$$\sqrt{(x_1 - y_1)^2 + (x_2 - y_2)^2 + \dots + (x_n - y_n)^2} = \sqrt{\sum_{i=1}^n (x_i - y_i)^2},$$

which denotes the (Euclidean) distance between the two vectors (the square root of the sum of squared differences between the corresponding elements in x and y), we shall soon become used to writing:

sqrt(sum((x-y)^2))

[1] 9.1159

or:

$$\sqrt{(\boldsymbol{x}-\boldsymbol{y})^T(\boldsymbol{x}-\boldsymbol{y})}$$

or even:

 $\|x - y\|_2$

In order to be able to read this notation, we only have to get to know the most common "building blocks". There are just a few of them, but it'll take some time until we become comfortable with their use.

What's more, we should note that vectorised code might be much faster than the for loop-based one (a.k.a. "iterative" style):

```
library("microbenchmark")
n <- 10000
x <- runif(n) # n random numbers in [0,1]
y <- runif(n)
print(microbenchmark(</pre>
```

276

```
t1={
       # "iterative" style
       s <- 0
       n <- length(x)</pre>
       for (i in 1:n)
           s <- s + (x[i]-y[i])^2</pre>
       sqrt(s)
   },
   t2={
       # "vectorised" style
       sqrt(sum((x-y)^2))
    }
), signif=3, unit='relative')
## Unit: relative
##
   expr min lq mean median uq max neval
##
     t1 119 119 105
                        117 114 85
                                      100
     t2 1 1 1 1 1 1
##
                                      100
```

C.2 Numeric Vectors

C.2.1 Creating Numeric Vectors

First let's introduce a few ways with which we can create numeric vectors.

C.2.1.1 c()

The c() function combines a given list of values to form a sequence:

c(1, 2, 3)

[1] 1 2 3
c(1, 2, 3, c(4, 5), c(6, c(7, 8)))

```
## [1] 1 2 3 4 5 6 7 8
```

Note that when we use the assignment operator, <- or = (both are equivalent), printing of the output is suppressed:

```
x <- c(1, 2, 3) # doesn't print anything
print(x)</pre>
```

[1] 1 2 3

However, we can enforce it by parenthesising the whole expression:

(x <- c(1, 2, 3))

[1] 1 2 3

In order to determine that x is indeed a numeric vector, we call:

mode(x)

[1] "numeric"
class(x)

[1] "numeric"

Remark. These two functions might return different results. For instance, in the next chapter we note that a numeric matrix will yield mode() of numeric and class() of matrix.

What is more, we can get the number of elements in x by calling:

```
length(x)
```

[1] 3

C.2.1.2 seq()

To create an arithmetic progression, i.e., a sequence of equally-spaced numbers, we can call the seq() function

seq(1, 9, 2)

[1] 1 3 5 7 9

If we access the function's documentation (by executing ?seq in the console), we'll note that the function takes a couple of parameters: from, to, by, length.out etc.

The above call is equivalent to:

seq(from=1, to=9, by=2)

[1] 1 3 5 7 9

The by argument can be replaced with length.out, which gives the desired size:

```
seq(0, 1, length.out=5)
```

[1] 0.00 0.25 0.50 0.75 1.00

Note that R supports partial matching of argument names:

seq(0, 1, len=5)

[1] 0.00 0.25 0.50 0.75 1.00

Quite often we need progressions with step equal to 1 or -1. Such vectors can be generated by applying the : operator.

1:10 # from:to (inclusive) ## [1] 1 2 3 4 5 6 7 8 9 10 -1:-10 ## [1] -1 -2 -3 -4 -5 -6 -7 -8 -9 -10

```
С.2.1.3 гер()
```

Moreover, rep() replicates a given vector. Check out the function's documentation (see ?rep) for the meaning of the arguments provided below.

rep(1, 5)

```
## [1] 1 1 1 1 1
rep(1:3, 4)
## [1] 1 2 3 1 2 3 1 2 3 1 2 3
rep(1:3, c(2, 4, 3))
## [1] 1 1 2 2 2 2 3 3 3
rep(1:3, each=4)
```

[1] 1 1 1 1 2 2 2 2 3 3 3 3

C.2.1.4 Pseudo-Random Vectors

We can also generate vectors of pseudo-random values. For instance, the following generates 5 deviates from the uniform distribution (every number has the same probability) on the unit (i.e., [0, 1]) interval:

```
runif(5, 0, 1)
```

[1] 0.56490 0.55881 0.44148 0.20764 0.66964

We call such numbers pseudo-random, because they are generated arithmetically. In fact, by setting the random number generator's state (also called the *seed*), we can obtain *reproducible* results.

```
set.seed(123)
runif(5, 0, 1) # a,b,c,d,e
## [1] 0.28758 0.78831 0.40898 0.88302 0.94047
runif(5, 0, 1) # f,g,h,i,j
## [1] 0.045556 0.528105 0.892419 0.551435 0.456615
```

279

```
set.seed(123)
runif(5, 0, 1) # a,b,c,d,e again!
```

[1] 0.28758 0.78831 0.40898 0.88302 0.94047

Note the difference between the uniform distribution on [0, 1] and the normal distribution with expected value of 0 and standard deviation of 1 (also called the standard normal distribution), see Figure C.1.

```
par(mfrow=c(1, 2)) # align plots in one row and two columns
hist(runif(10000, 0, 1), col="white", ylim=c(0, 2500)); box()
hist(rnorm(10000, 0, 1), col="white", ylim=c(0, 2500)); box()
```

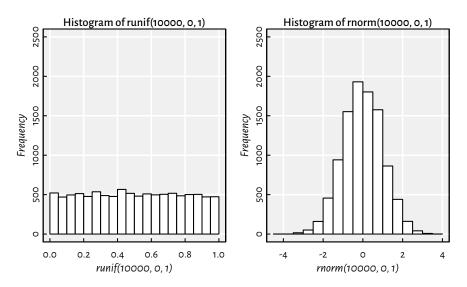


Figure C.1: Uniformly vs. normally distributed random variables

Another useful function samples a number of values from a given vector, either with or without replacement:

sample(1:10, 8, replace=TRUE) # with replacement

[1] 3 3 10 2 6 5 4 6

sample(1:10, 8, replace=FALSE) # without replacement

[1] 9 5 3 8 1 4 6 10

Note that if n is a single number, sample(n, ...) is equivalent to sample(1:n, ...). This is a dangerous behaviour than may lead to bugs in our code. Read more at ?sample.

C.2.2 Vector-Scalar Operations

Mathematically, we sometimes refer to a vector that is reduced to a single component as a *scalar*. We are used to denoting such objects with lowercase letters such as $a, b, i, s, x \in \mathbb{R}$.

Remark. Note that some programming languages distinguish between atomic numerical entities and length-one vectors, e.g., 7 vs. [7] in Python. This is not the case in R, where length(7) returns 1.

Vector-scalar arithmetic operations such as sx (multiplication of a vector $x = (x_1, ..., x_n)$ by a scalar *s*) result in a vector y such that $y_i = sx_i$, i = 1, ..., n.

The same rule holds for, e.g., s + x, x - s, x/s.

```
0.5 * c(1, 10, 100)
## [1] 0.5 5.0 50.0
10 + 1:5
## [1] 11 12 13 14 15
seq(0, 10, by=2)/10
## [1] 0.0 0.2 0.4 0.6 0.8 1.0
By -x we will mean (-1)x:
-seq(0, 1, length.out=5)
## [1] 0.00 -0.25 -0.50 -0.75 -1.00
Note that in R the same rule applies for exponentiation:
(0:5)^2 # synonym: (1:5)**2
```

[1] 0 1 4 9 16 25 2^(0:5)

[1] 1 2 4 8 16 32

However, in mathematics, we are **not** used to writing 2^x or x^2 .

C.2.3 Vector-Vector Operations

Let $\mathbf{x} = (x_1, \dots, x_n)$ and $\mathbf{y} = (y_1, \dots, y_n)$ be two vectors of identical lengths.

Arithmetic operations x + y and x - y are performed *elementwise*, i.e., they result in a vector z such that $z_i = x_i + y_i$ and $z_i = x_i - y_i$, respectively, i = 1, ..., n.

```
x <- c(1, 2, 3, 4)
y <- c(1, 10, 100, 1000)
x+y
```

[1] 2 12 103 1004 x-y

-8

-97 -996

0

Although in mathematics we are **not** used to using any special notation for elementwise multiplication, division and exponentiation, this is available in R.

```
## [1] 1 20 300 4000
x/y
## [1] 1.000 0.200 0.030 0.004
y^x
```

```
## [1] 1e+00 1e+02 1e+06 1e+12
```

Remark. 1e+12 is a number written in the *scientific notation*. It means "1 times 10 to the power of 12", i.e., 1×10^{12} . Physicists love this notation, because they are used to dealing with very small (think sizes of quarks) and very large (think distances between galaxies) entities.

Moreover, in R the **recycling rule** is applied if we perform elementwise operations on vectors of *different* lengths – the shorter vector is recycled as many times as needed to match the length of the longer vector, just as if we were performing:

rep(1:3, length.out=12) # recycle 1,2,3 to get 12 values

```
[1] 1 2 3 1 2 3 1 2 3 1 2 3
##
Therefore:
1:6 * c(1)
## [1] 1 2 3 4 5 6
1:6 * c(1,10)
## [1] 1 20 3 40 5 60
1:6 * c(1,10,100)
## [1]
         1 20 300
                        50 600
                     4
1:6 * c(1,10,100,1000)
## Warning in 1:6 * c(1, 10, 100, 1000): longer object length is not a
## multiple of shorter object length
## [1]
          1
              20
                  300 4000
                              5
                                   60
```

[1]

x*y

Note that a warning is not an error – we still get a result that makes sense.

C.2.4 Aggregation Functions

R implements a couple of *aggregation* functions:

- sum(x) = $\sum_{i=1}^{n} x_i = x_1 + x_2 + \dots + x_n$
- prod(x) = $\prod_{i=1}^{n} x_i = x_1 x_2 \dots x_n$
- mean(x) = $\frac{1}{n} \sum_{i=1}^{n} x_i$ arithmetic mean
- $\operatorname{var}(x) = \operatorname{sum}((x-\operatorname{mean}(x))^2)/(\operatorname{length}(x)-1) = \frac{1}{n-1} \sum_{i=1}^n \left(x_i \frac{1}{n} \sum_{j=1}^n x_j\right)^2 \operatorname{variance}^n$
- sd(x) = sqrt(var(x)) standard deviation

see also:min(), max(), median(), quantile().

Remark. Remember that you can always access the R manual by typing ?function-name, e.g., ?quantile.

Remark. Note that $\sum_{i=1}^{n} x_i$ can also be written as $\sum_{i=1}^{n} x_i$ or even $\sum_{i=1,...,n} x_i$. These all mean the sum of x_i for *i* from 1 to *n*, that is, the sum of $x_1, x_2, ..., x_n$, i.e., $x_1 + x_2 + ...$

```
... + x<sub>n</sub>.
x <- runif(1000)
mean(x)
## [1] 0.49728
median(x)
## [1] 0.48995
min(x)
## [1] 0.00046535
max(x)</pre>
```

[1] 0.9994

C.2.5 Special Functions

Furthermore, R supports numerous mathematical functions, e.g., sqrt(), abs(), round(), log(), exp(), cos(), sin(). All of them are vectorised – when applied on a vector of length n, they yield a vector of length n in result.

For example, here is how we can compute the square roots of all the integers between 1 and 9:

sqrt(1:9)

```
## [1] 1.0000 1.4142 1.7321 2.0000 2.2361 2.4495 2.6458 2.8284 3.0000
```

Vectorisation is super-convenient when it comes to, for instance, plotting (see Figure C.2).

```
x <- seq(-2*pi, 6*pi, length.out=51)
plot(x, sin(x), type="l")
lines(x, cos(x), col="red") # add a curve to the current plot</pre>
```

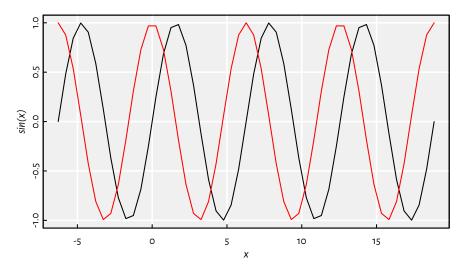


Figure C.2: An example plot of the sine and cosine functions

Exercise C.1 Try increasing the length.out argument to make the curves smoother.

C.2.6 Norms and Distances

Norms are used to measure the *size* of an object. Mathematically, we will also be interested in the following norms:

• Euclidean norm:

$$\|\mathbf{x}\| = \|\mathbf{x}\|_2 = \sqrt{\sum_{i=1}^n x_i^2}$$

this is nothing else than the *length* of the vector x

• Manhattan (taxicab) norm:

$$\|x\|_{1} = \sum_{i=1}^{n} |x_{i}|$$

Vector Algebra in R

• Chebyshev (maximum) norm:

$$\|\mathbf{x}\|_{\infty} = \max_{i=1,\dots,n} |x_i| = \max\{|x_1|, |x_2|, \dots, |x_n|\}$$

The above norms can be easily implemented by means of the building blocks introduced above. This is super easy:

```
z <- c(1, 2)
sqrt(sum(z^2)) # or norm(z, "2"); Euclidean
## [1] 2.2361
sum(abs(z)) # Manhattan
## [1] 3
max(abs(z)) # Chebyshev</pre>
```

[1] 2

Also note that all the norms easily generate the corresponding *distances* (metrics) between two given points. In particular:

$$\|\boldsymbol{x} - \boldsymbol{y}\| = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

gives the Euclidean distance (metric) between the two vectors.

```
u <- c(1, 0)
v <- c(1, 1)
sqrt(sum((u-v)^2))
```

[1] 1

This is the "normal" distance that you learned at school.

C.2.7 Dot Product (*)

What is more, given two vectors of identical lengths, x and y, we define their *dot product* (a.k.a. *scalar* or *inner product*) as:

$$\boldsymbol{x} \cdot \boldsymbol{y} = \sum_{i=1}^n x_i y_i.$$

Let's stress that this is not the same as the elementwise vector multiplication in R – the result is a single number.

u <- c(1, 0) v <- c(1, 1) sum(u*v)

[1] 1

Remark. (*) Note that the squared Euclidean norm of a vector is equal to the dot product of the vector and itself, $||\mathbf{x}||^2 = \mathbf{x} \cdot \mathbf{x}$.

(*) Interestingly, a dot product has a nice geometrical interpretation:

$$\boldsymbol{x} \cdot \boldsymbol{y} = \|\boldsymbol{x}\| \|\boldsymbol{y}\| \cos \alpha$$

where α is the angle between the two vectors. In other words, it is the product of the lengths of the two vectors and the cosine of the angle between them. Note that we can get the cosine part by computing the dot product of the *normalised* vectors, i.e., such that their lengths are equal to 1.

For example, the two vectors u and v defined above can be depicted as in Figure C.3.

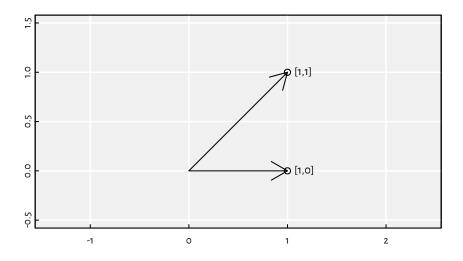


Figure C.3: Example vectors in 2D

We can compute the angle between them by calling: (len_u <- sqrt(sum(u^2))) # length == Euclidean norm ## [1] 1 (len_v <- sqrt(sum(v^2))) ## [1] 1.4142

```
(cos_angle_uv <- (sum(u*v)/(len_u*len_v))) # cosine of the angle</pre>
```

[1] 0.70711
acos(cos_angle_uv)*180/pi # angle in degs

[1] 45

C.2.8 Missing and Other Special Values

R has a notion of a missing (not-available) value. It is very useful in data analysis, as we sometimes don't have an information on an object's feature. For instance, we might not know a patient's age if he was admitted to the hospital unconscious.

```
x <- c(1, 2, NA, 4, 5)
```

Operations on missing values generally result in missing values – that makes a lot sense.

x + 11:15

[1] 12 14 NA 18 20 mean(x)

[1] NA

If we wish to compute a vector's aggregate after all, we can get rid of the missing values by calling na.omit():

mean(na.omit(x)) # mean of non-missing values

[1] 3

We can also make use of the na.rm parameter of the mean() function (however, not every aggregation function has it – always refer to documentation).

```
mean(x, na.rm=TRUE)
```

[1] 3

Remark. Note that in R, a dot has no special meaning. na.omit is as good of a function's name or variable identifier as na_omit, naOmit, NAOMIT, naomit and NaOmit. Note that, however, R is a case-sensitive language – these are all different symbols. Read more in the *Details* section of ?make.names.

Moreover, some arithmetic operations can result in infinities $(\pm \infty)$:

log(0)

[1] -Inf

```
10^1000 # too large
## [1] Inf
Also, sometimes we'll get a not-a-number, NaN. This is not a missing value, but a "in-
valid" result.
sqrt(-1)
## Warning in sqrt(-1): NaNs produced
## [1] NaN
log(-1)
## Warning in log(-1): NaNs produced
## [1] NaN
Inf-Inf
## [1] NaN
```

C.3 Logical Vectors

C.3.1 Creating Logical Vectors

```
In R there are 3 (!) logical values: TRUE, FALSE and geez, I don't know, NA maybe?
c(TRUE, FALSE, TRUE, NA, FALSE, FALSE, TRUE)
```

```
## [1] TRUE FALSE TRUE NA FALSE FALSE TRUE
(x <- rep(c(TRUE, FALSE, NA), 2))
## [1] TRUE FALSE NA TRUE FALSE NA
mode(x)
## [1] "logical"
class(x)
## [1] "logical"
length(x)</pre>
```

[1] 6

Remark. By default, T is a synonym for TRUE and F for FALSE. This may be changed though so it's better not to rely on these.

C.3.2 Logical Operations

Logical operators such as & (and) and | (or) are performed in the same manner as arithmetic ones, i.e.:

- they are elementwise operations and
- recycling rule is applied if necessary.

```
For example,
TRUE & TRUE
## [1] TRUE
TRUE & c(TRUE, FALSE)
## [1] TRUE FALSE
c(FALSE, FALSE, TRUE, TRUE) | c(TRUE, FALSE, TRUE, FALSE)
## [1] TRUE FALSE TRUE TRUE
The ! operator stands for logical elementwise negation:
!c(TRUE, FALSE)
## [1] FALSE TRUE
Generally, operations on NAs yield NA unless other solution makes sense.
u <- c(TRUE, FALSE, NA)
v <- c(TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, NA, NA, NA)</pre>
u & v # elementwise AND (conjunction)
## [1] TRUE FALSE
                      NA FALSE FALSE FALSE
                                               NA FALSE
                                                            NA
u | v # elementwise OR (disjunction)
       TRUE TRUE TRUE TRUE FALSE
                                         NA TRUF
                                                     NA
                                                            NA
## [1]
      # elementwise NOT (negation)
!u
## [1] FALSE TRUE
                      NA
```

C.3.3 Comparison Operations

We can compare the corresponding elements of two numeric vectors and get a logical vector in result. Operators such as < (less than), <= (less than or equal), == (equal), != (not equal), > (greater than) and >= (greater than or equal) are again elementwise and use the recycling rule if necessary.

3 < 1:5 # c(3, 3, 3, 3, 3) < c(1, 2, 3, 4, 5)

[1] FALSE FALSE FALSE TRUE TRUE

```
1:2 == 1:4 # c(1,2,1,2) == c(1,2,3,4)
## [1] TRUE TRUE FALSE FALSE
z <- c(0, 3, -1, 1, 0.5)
(z >= 0) & (z <= 1)
```

[1] TRUE FALSE FALSE TRUE TRUE

C.3.4 Aggregation Functions

Also note the following operations on *logical* vectors: z <- 1:10 all(z >= 5) # are all values TRUE? ## [1] FALSE any(z >= 5) # is there any value TRUE? ## [1] TRUE Moreover: sum(z >= 5) # how many TRUE values are there? ## [1] 6 mean(z >= 5) # what is the proportion of TRUE values?

[1] 0.6

The behaviour of sum() and mean() is dictated by the fact that, when interpreted in numeric terms, TRUE is interpreted as numeric 1 and FALSE as 0.

as.numeric(c(FALSE, TRUE))

```
## [1] 0 1
```

Therefore in the example above we have:

```
z >= 5
## [1] FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE
as.numeric(z >= 5)
## [1] 0 0 0 0 1 1 1 1 1 1
sum(as.numeric(z >= 5)) # the same as sum(z >= 5)
```

[1] 6

Yes, there are 6 values equal to TRUE (or 6 ones after conversion), the sum of zeros and ones gives the number of ones.

C.4 Character Vectors

C.4.1 Creating Character Vectors

Individual character strings can be created using double quotes or apostrophes. These are the elements of character vectors

```
(x <- "a string")
## [1] "a string"
mode(x)
## [1] "character"
class(x)
## [1] "character"
length(x)
## [1] 1
rep(c("aaa", 'bb', "c"), 2)
## [1] "aaa" "bb" "c" "aaa" "bb" "c"</pre>
```

C.4.2 Concatenating Character Vectors

To join (concatenate) the corresponding elements of two or more character vectors, we call the paste() function:

```
paste(c("a", "b", "c"), c("1", "2", "3"))
## [1] "a 1" "b 2" "c 3"
paste(c("a", "b", "c"), c("1", "2", "3"), sep="")
## [1] "a1" "b2" "c3"
Also note:
paste(c("a", "b", "c"), 1:3) # the same as as.character(1:3)
## [1] "a 1" "b 2" "c 3"
paste(c("a", "b", "c"), 1:6) # recycling
## [1] "a 1" "b 2" "c 3" "a 4" "b 5" "c 6"
paste(c("a", "b", "c"), 1:6, c("!", "?"))
```

[1] "a 1 !" "b 2 ?" "c 3 !" "a 4 ?" "b 5 !" "c 6 ?"

C.4.3 Collapsing Character Vectors

We can also collapse a sequence of strings to a single string:

```
paste(c("a", "b", "c", "d"), collapse="")
```

[1] "abcd"
paste(c("a", "b", "c", "d"), collapse=",")

[1] "a,b,c,d"

C.5 Vector Subsetting

C.5.1 Subsetting with Positive Indices

In order to extract subsets (parts) of vectors, we use the square brackets:

(x <- seq(10, 100, 10))

[1] 10 20 30 40 50 60 70 80 90 100
x[1] # the first element

[1] 10
x[length(x)] # the last element

[1] 100

More than one element at a time can also be extracted:

x[1:3] # the first three

[1] 10 20 30
x[c(1, length(x))] # the first and the last

[1] 10 100

For example, the order() function returns the indices of the smallest, 2nd smallest, 3rd smallest, ..., the largest element in a given vector. We will use this function when implementing our first classifier.

y <- c(50, 30, 10, 20, 40)
(o <- order(y))
[1] 3 4 2 5 1</pre>

292

Hence, we see that the smallest element in y is at index 3 and the largest at index 1: y[o[1]]

```
## [1] 10
y[o[length(y)]]
## [1] 50
Therefore, to get a sorted version of y, we call:
y[o] # see also sort(y)
## [1] 10 20 30 40 50
We can also obtain the 3 largest elements by calling:
y[order(y, decreasing=TRUE)[1:3]]
```

[1] 50 40 30

C.5.2 Subsetting with Negative Indices

Subsetting with a vector of negative indices, *excludes* the elements at given positions:

```
x[-1] # all but the first
## [1] 20 30 40 50 60 70 80 90 100
x[-(1:3)]
## [1] 40 50 60 70 80 90 100
x[-c(1:3, 5, 8)]
## [1] 40 60 70 90 100
```

C.5.3 Subsetting with Logical Vectors

We may also subset a vector x of length n with a logical vector l also of length n. The *i*-th element, x_i , will be extracted if and only if the corresponding l_i is true.

x[c(TRUE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, TRUE, FALSE)]

[1] 10 50 70 80 100

This gets along nicely with comparison operators that yield logical vectors on output. x>50

[1] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE

x[x>50] # select elements in x that are greater than 50

[1] 60 70 80 90 100 x[x<30 | x>70]

[1] 10 20 80 90 100
x[x<max(x)] # getting rid of the greatest element</pre>

[1] 10 20 30 40 50 60 70 80 90
x[x > min(x) & x < max(x)] # return all but the smallest and greatest one</pre>

[1] 20 30 40 50 60 70 80 90

Of course, e.g., x[x<max(x)] returns a new, independent object. In order to remove the greatest element in x permanently, we can write x <- x[x<max(x)].

C.5.4 Replacing Elements

Note that the three above vector indexing schemes (positive, negative, logical indices) allow for replacing specific elements with new values.

```
x[-1] <- 10000
x
## [1] 10 10000 10000 10000 10000 10000 10000 10000 10000
x[-(1:7)] <- c(1, 2, 3)
x</pre>
```

[1] 10 10000 10000 10000 10000 10000 10000 1 2 3

C.5.5 Other Functions

head() and tail() return, respectively, a few (6 by default) first and last elements of a vector.

```
head(x) \# head(x, 6)
```

[1] 10 10000 10000 10000 10000 10000

tail(x, 3)

[1] 1 2 3

Sometimes the which() function can come in handy. For a given logical vector, it returns all the indices where TRUE elements are stored.

which(c(TRUE, FALSE, TRUE, TRUE, FALSE, FALSE, TRUE))

[1] 1 3 4 7

294

print(y) # recall

[1] 50 30 10 20 40
which(y>30)

[1] 1 5

Note that y[y>70] gives the same result as y[which(y>70)] but is faster (because it involves less operations).

which.min() and which.max() return the index of the smallest and the largest element, respectively:

```
which.min(y) # where is the minimum?
```

[1] 3

which.max(y)

[1] 1

y[which.min(y)] # min(y)

[1] 10

is.na() indicates which elements are missing values (NAs):

z <- c(1, 2, NA, 4, NA, 6) is.na(z)

[1] FALSE FALSE TRUE FALSE TRUE FALSE

Therefore, to remove them from z permanently, we can write (compare na.omit(), see also is.finite()):

```
(z <- z[!is.na(z)])
```

[1] 1 2 4 6

C.6 Named Vectors

C.6.1 Creating Named Vectors

Vectors in R can be named – each element can be assigned a string label.

```
x <- c(20, 40, 99, 30, 10)
names(x) <- c("a", "b", "c", "d", "e")
x # a named vector</pre>
```

```
##
   a b c d e
## 20 40 99 30 10
Other ways to create named vectors include:
c(a=1, b=2, c=3)
## a b c
## 1 2 3
structure(1:3, names=c("a", "b", "c"))
## a b c
## 1 2 3
For instance, the summary() function returns a named vector:
summary(x) # NAMED vector, we don't want this here yet
##
      Min. 1st Qu.
                    Median
                               Mean 3rd Qu.
                                                Max.
##
      10.0
              20.0
                       30.0
                               39.8
                                       40.0
                                                99.0
```

This gives the minimum, 1st quartile (25%-quantile), Median (50%-quantile), aritmetic mean, 3rd quartile (75%-quantile) and maximum.

Note that x is still a numeric vector, we can perform various operations on it as usual: sum(x)

[1] 199
x[x>3]
a b c d e
20 40 99 30 10
Names can be dropped by calling:
unname(x)
[1] 20 40 99 30 10

as.numeric(x) # we need to know the type of x though

[1] 20 40 99 30 10

C.6.2 Subsetting Named Vectors with Character String Indices

It turns out that extracting elements from a named vector can *also* be performed by means of a vector of character string indices:

x[c("a", "d", "b")]

a d b

Vector Algebra in R

20 30 40
summary(x)[c("Median", "Mean")]
Median Mean
30.0 39.8

C.7 Factors

Factors are *special* kinds of vectors that are frequently used to store qualitative data, e.g., species, groups, types. Factors are convenient in situations where we have many observations, but the number of distinct (unique) values is relatively small.

Since R 4.0, the global option stringsAsFactors defaults to FALSE. Before that, functions such as data.frame() and read.csv() used to convert character vectors to factors automatically, which could lead to some unpleasant, hard to find bugs. Luckily, this is no longer the case. However, factor objects are still useful.

C.7.1 Creating Factors

For example, the following character vector:

```
(col <- sample(c("blue", "red", "green"), replace=TRUE, 10))</pre>
```

```
## [1] "green" "green" "red" "green" "red" "red" "red"
```

[9] "green" "blue"

can be converted to a factor by calling:

(fcol <- factor(col))</pre>

[1] green green green red green red red green blue
Levels: blue green red

Note how different is the way factors are printed out on the console.

C.7.2 Levels

We can easily obtain the list unique labels:

levels(fcol)

[1] "blue" "green" "red"

Those can be re-encoded by calling:

```
levels(fcol) <- c("b", "g", "r")
fcol</pre>
```

[1]gggrgrrrgb ## Levels: bgr

To create a contingency table (in the form of a named numeric vector, giving how many values are at each factor level), we call:

table(fcol)

fcol ## b g r ## 1 5 4

C.7.3 Internal Representation (*)

Factors have a look-and-feel of character vectors, however, internally they are represented as integer sequences.

class(fcol)

```
## [1] "factor"
mode(fcol)
```

```
## [1] "numeric"
as.numeric(fcol)
```

[1] 2 2 2 3 2 3 3 3 2 1

These are always integers from 1 to M inclusive, where M is the number of levels. Their meaning is given by the levels() function: in the example above, the meaning of the codes 1, 2, 3 is, respectively, b, g, r.

If we wished to generate a factor with a specific order of labels, we could call:

```
factor(col, levels=c("red", "green", "blue"))
```

[1] green green green red green red red green blue
Levels: red green blue

We can also assign different labels upon creation of a factor:

factor(col, levels=c("red", "green", "blue"), labels=c("r", "g", "b"))

298

```
## [1]gggrgrrrgb
## Levels: rgb
```

Knowing how factors are represented is important when we deal with factors that are built around data that *look like* numeric. This is because their conversion to numeric gives the internal codes, not the actual values:

```
(f <- factor(c(1, 3, 0, 1, 4, 0, 0, 1, 4)))
## [1] 1 3 0 1 4 0 0 1 4
## Levels: 0 1 3 4
as.numeric(f) # not necessarily what we want here
## [1] 2 3 1 2 4 1 1 2 4
as.numeric(as.character(f)) # much better</pre>
```

```
## [1] 1 3 0 1 4 0 0 1 4
```

Moreover, that idea is labour-saving in contexts such as plotting of data that are grouped into different classes. For instance, here is a scatter plot for the Sepal.Length and Petal.Width variables in the iris dataset (which is an object of type data.frame, see below). Flowers are of different Species, and we wish to indicate which point belongs to which class:

```
which_preview <- c(1, 11, 51, 69, 101) # indexes we show below
iris$Sepal.Length[which_preview]
```

[1] 5.1 5.4 7.0 6.2 6.3
iris\$Petal.Width[which_preview]

[1] 0.2 0.2 1.4 1.5 2.5

iris\$Species[which_preview]

```
## [1] setosa setosa versicolor versicolor virginica
## Levels: setosa versicolor virginica
```

```
as.numeric(iris$Species)[which_preview]
```

```
## [1] 1 1 2 2 3
plot(iris$Sepal.Length, # x (it's a vector)
            iris$Petal.Width, # y (it's a vector)
            col=as.numeric(iris$Species), # colours
            pch=as.numeric(iris$Species)
)
```

The above (see Figure C.4) was possible because the Species column is a factor object with:

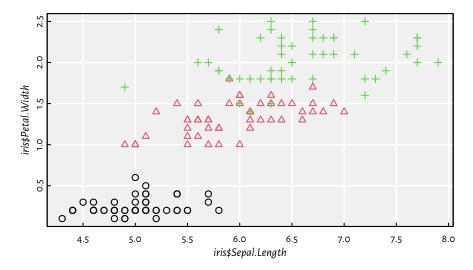


Figure C.4: as.numeric() on factors can be used to create different plotting styles

```
levels(iris$Species)
```

```
## [1] "setosa" "versicolor" "virginica"
```

and the meaning of pch of 1, 2, 3, ... is "circle", "triangle", "plus", ..., respectively. What's more, there's a default palette that maps consecutive integers to different colours:

palette()

```
## [1] "black" #DF536B" #61D04F" #2297E6" #28E2E5" #CD0BBC"
## [7] "#F5C710" "gray62"
```

Hence, black circles mark irises from the 1st class, i.e., "setosa".

C.8 Lists

Numeric, logical and character vectors are *atomic* objects – each component is of the same type. Let's take a look at what happens when we create an atomic vector out of objects of different types:

```
c("nine", FALSE, 7, TRUE)
```

[1] "nine" "FALSE" "7" "TRUE"

c(FALSE, 7, TRUE, 7)

[1] 0 7 1 7

In each case, we get an object of the most "general" type which is able to represent our data.

On the other hand, R *lists* are *generalised* vectors. They can consist of arbitrary R objects, possibly of mixed types – also other lists.

C.8.1 Creating Lists

Most commonly, we create a generalised vector by calling the list() function.

```
(l <- list(1:5, letters, runif(3)))</pre>
## [[1]]
## [1] 1 2 3 4 5
##
## [[2]]
## [1] "a" "b" "c" "d" "e" "f" "a" "h" "i" "i" "k" "l" "m" "n" "o" "p" "a"
## [18] "r" "s" "t" "u" "v" "w" "x" "v" "z"
##
## [[3]]
## [1] 0.95683 0.45333 0.67757
mode(l)
## [1] "list"
class(l)
## [1] "list"
length(l)
## [1] 3
There's a more compact way to print a list on the console:
str(l)
## List of 3
## $ : int [1:5] 1 2 3 4 5
## $ : chr [1:26] "a" "b" "c" "d" ...
## $ : num [1:3] 0.957 0.453 0.678
We can also convert an atomic vector to a list by calling:
as.list(1:3)
## [[1]]
```

[1] 1
##
[[2]]
[1] 2
##
[[3]]
[1] 3

C.8.2 Named Lists

List, like other vectors, may be assigned a names attribute.

```
names(l) <- c("a", "b", "c")
l
## $a
## [1] 1 2 3 4 5
##
## $b
## [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q"
## [18] "r" "s" "t" "u" "v" "w" "x" "y" "z"
##
## $c
## [1] 0.95683 0.45333 0.67757</pre>
```

C.8.3 Subsetting and Extracting From Lists

Applying a square brackets operator creates a sub-list, which is of type list as well.

```
l[-1]
```

```
## $b
## [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q"
## [18] "r" "s" "t" "u" "v" "w" "x" "y" "z"
##
## $c
## [1] 0.95683 0.45333 0.67757
L[c("a", "c")]
## $a
## [1] 1 2 3 4 5
##
## $c
## [1] 0.95683 0.45333 0.67757
L[1]
```

```
302
```

\$a ## [1] 1 2 3 4 5

Note in the 3rd case we deal with a list of length one, not a numeric vector.

To *extract* (dig into) a particular (single) element, we use double square brackets:

l[[1]]

[1] 1 2 3 4 5 l[["c"]]

[1] 0.95683 0.45333 0.67757

The latter can equivalently be written as:

l\$c

[1] 0.95683 0.45333 0.67757

C.8.4 Common Operations

Lists, because of their generality (they can store any kind of object), have few dedicated operations. In particular, it neither makes sense to add, multiply, ... two lists together nor to aggregate them.

However, if we wish to run some operation on each element, we can call list-apply:

```
(k <- list(x=runif(5), y=runif(6), z=runif(3))) # a named list</pre>
```

```
## $x
## [1] 0.57263 0.10292 0.89982 0.24609 0.04206
##
## $v
## [1] 0.32792 0.95450 0.88954 0.69280 0.64051 0.99427
##
## $z
## [1] 0.65571 0.70853 0.54407
lapply(k, mean)
## $x
## [1] 0.37271
##
## $v
## [1] 0.74992
##
## $z
## [1] 0.6361
```

The above computes the mean of each of the three numeric vectors stored inside list k. Moreover:

lapply(k, range)

```
## $x
## [1] 0.04206 0.89982
##
## $y
## [1] 0.32792 0.99427
##
## $z
## [1] 0.54407 0.70853
```

```
The built-in function range(x) returns c(min(x), max(x)).
```

unlist() tries (it might not always be possible) to unwind a list to a simpler, atomic form:

unlist(lapply(k, mean))

x y z ## 0.37271 0.74992 0.63610

Moreover, split(x, f) classifies elements in a vector x into subgroups defined by a factor (or an object coercible to) of the same length.

```
4,
                           5,
                              6,
                                   7,
                                         8,
                                             9, 10)
x <- c( 1, 2,
                 3,
f <- c("a", "b", "a", "a", "c", "b", "b", "a", "a", "b")
split(x, f)
## $a
## [1] 1 3 4 8 9
##
## $b
## [1] 2 6 7 10
##
## $c
## [1] 5
```

This is very useful when combined with lapply() and unlist(). For instance, here are the mean sepal lengths for each of the three flower species in the famous iris dataset.

```
unlist(lapply(split(iris$Sepal.Length, iris$Species), mean))
```

setosa versicolor virginica ## 5.006 5.936 6.588

By the way, if we take a look at the documentation of ?lapply, we will note that that

304

this function is defined as lapply(X, FUN, ...). Here ... denotes the optional arguments that will be passed to FUN.

In other words, lapply(X, FUN, ...) returns a list Y of length length(X) such that Y[[i]] <- FUN(X[[i]], ...) for each i. For example, mean() has an additional argument na.rm that aims to remove missing values from the input vector. Compare the following:

```
t <- list(1:10, c(1, 2, NA, 4, 5))
unlist(lapply(t, mean))</pre>
```

[1] 5.5 NA

```
unlist(lapply(t, mean, na.rm=TRUE))
```

[1] 5.5 3.0

Of course, we can always pass a custom (self-made) function object as well:

```
min_mean_max <- function(x) {
    # the last expression evaluated in the function's body
    # gives its return value:
    c(min(x), mean(x), max(x))
}
lapply(k, min_mean_max)
## $x
## [1] 0.04206 0.37271 0.89982
##
## $y
## [1] 0.32792 0.74992 0.99427
##
## $z
## [1] 0.54407 0.63610 0.70853</pre>
```

or, more concisely (we can skip the curly braces here – they are normally used to group many expressions into one; also, if we don't plan to re-use the function again, there's no need to give it a name):

lapply(k, function(x) c(min(x), mean(x), max(x)))

\$x
[1] 0.04206 0.37271 0.89982
##
\$y
[1] 0.32792 0.74992 0.99427
##
\$z
[1] 0.54407 0.63610 0.70853

C.9 Further Reading

Recommended further reading: (Venables et al. 2021) Other: (Deisenroth et al. 2020), (Peng 2019), (Wickham & Grolemund 2017)

Matrix Algebra in R

These lecture notes are distributed in the hope that they will be useful. Any bug reports are appreciated.

Vectors are one-dimensional objects – they represent "flat" sequences of values. Matrices, on the other hand, are two-dimensional – they represent tabular data, where values aligned into rows and columns. Matrices (and their extensions – data frames, which we'll cover in the next chapter) are predominant in data science, where objects are typically represented by means of feature vectors.

Below are some examples of structured datasets in matrix forms.

```
head(as.matrix(iris[,1:4]))
```

##	Sepal.L	ength S	Sepal	.Width	Petal.Ler	ngth Pet	tal.Width
## [1,]		5.1		3.5		1.4	0.2
## [2,]		4.9		3.0		1.4	0.2
## [3,]		4.7		3.2		1.3	0.2
## [4,]		4.6		3.1		1.5	0.2
## [5,]		5.0		3.6		1.4	0.2
## [6,]		5.4		3.9		1.7	0.4
WorldPh	ones						
##	N.Amer	Europe	Asia	S.Amer	Oceania	Africa	Mid.Amer
## 1951	45939	21574	2876	1815	1646	89	555
## 1956	60423	29990	4708	2568	2366	1411	733
## 1957	64721	32510	5230	2695	2526	1546	773
## 1958	68484	35218	6662	2845	2691	1663	836
## 1959	71799	37598	6856	3000	2868	1769	911
## 1960	76036	40341	8220	3145	3054	1905	1008
## 1961	79831	43173	9053	3338	3224	2005	1076

The aim of this chapter is to cover the most essential matrix operations, both from the computational perspective and the mathematical one.

D.1 Creating Matrices

D.1.1 matrix()

A matrix can be created - amongst others - with a call to the matrix() function.

```
(A <- matrix(c(1, 2, 3, 4, 5, 6), byrow=TRUE, nrow=2))
```

##		[,1]	[,2]	[,3]		
##	[1,]	1	2	3		
##	[2,]	4	5	6		
class(A)						

[1] "matrix" "array"

Given a numeric vector of length 6, we've asked R to convert to a numeric matrix with 2 rows (the nrow argument). The number of columns has been deduced automatically (otherwise, we would additionally have to pass ncol=3 to the function).

Using mathematical notation, above we have defined $A \in \mathbb{R}^{2 \times 3}$:

 $\mathbf{A} = \left[\begin{array}{ccc} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \end{array} \right] = \left[\begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \end{array} \right]$

We can fetch the size of the matrix by calling:

dim(A) # number of rows, number of columns

[1] 2 3

We can also "promote" a "flat" vector to a column vector, i.e., a matrix with one column by calling:

as.matrix(1:3)

[,1]
[1,] 1
[2,] 2
[3,] 3

308

D.1.2 Stacking Vectors

Other ways to create a matrix involve stacking a couple of vectors of equal lengths along each other:

```
rbind(1:3, 4:6, 7:9) # row bind
##
        [,1] [,2] [,3]
## [1,]
           1
                2
                     3
## [2,]
           4
                5
                     6
## [3,]
                8
                     9
         7
cbind(1:3, 4:6, 7:9) # column bind
##
        [,1] [,2] [,3]
## [1,]
           1
                4
                     7
## [2,]
           2
                5
                     8
                6
                     9
## [3,]
           3
```

These functions also allow for adding new rows/columns to existing matrices:

```
rbind(A, c(-1, -2, -3))
```

##		[,1]	[,2]	[,3]	
##	[1,]	1	2	3	
##	[2,]	4	5	6	
##	[3,]	-1	-2	- 3	
cbi	.nd(A,	, c(-1	L, -2)))	
##		[,1]	[,2]	[,3]	[,4]

[1,] 1 2 3 -1 ## [2,] 4 5 6 -2

D.1.3 Beyond Numeric Matrices

Note that logical matrices are possible as well. For instance, knowing that comparison such as < and == are performed elementwise also in the case of matrices, we can obtain:

A >= 3

[,1] [,2] [,3]
[1,] FALSE FALSE TRUE
[2,] TRUE TRUE TRUE

Moreover, although much more rarely used, we can define character matrices:

matrix(LETTERS[1:12], ncol=6)

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] "A" "C" "E" "G" "I" "K"

```
## [2,] "B" "D" "F" "H" "J" "L"
```

D.1.4 Naming Rows and Columns

Just like vectors could be equipped with names attribute:

c(a=1, b=2, c=3)

a b c ## 1 2 3

matrices can be assigned row and column labels in the form of a list of two character vectors:

```
dimnames(A) <- list(
    c("a", "b"), # row labels
    c("x", "y", "z") # column labels
)
A
## x y z
## a 1 2 3</pre>
```

b 4 5 6

D.1.5 Other Methods

The read.table() (and its special case, read.csv()), can be used to read a matrix from a text file. We will cover it in the next chapter, because technically it returns a data frame object (which we can convert to a matrix with a call to as.matrix()).

outer() applies a given (vectorised) function on each pair of elements from two vectors, forming a two-dimensional "grid". More precisely outer(x, y, f, ...) returns a matrix \mathbf{Z} with length(x) rows and length(y) columns such that $z_{i,j} = f(x_i, y_j, ...)$, where ... are optional further arguments to f.

```
outer(c(1, 10, 100), 1:5, "*") # apply the multiplication operator
##
       [,1] [,2] [,3] [,4] [,5]
## [1,]
           1
               2
                    3
                         4
                              5
## [2,] 10
              20
                   30
                        40
                             50
## [3,] 100 200 300 400 500
outer(c("A", "B"), 1:8, paste, sep="-") # concatenate strings
##
        [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
## [1,] "A-1" "A-2" "A-3" "A-4" "A-5" "A-6" "A-7" "A-8"
## [2,] "B-1" "B-2" "B-3" "B-4" "B-5" "B-6" "B-7" "B-8"
```

simplify2array() is an extension of the unlist() function. Given a list of vectors,

310

each of length one, it will return an "unlisted" vector. However, if a list of equisized vectors of greater lengths is given, these will be converted to a matrix.

```
simplify2array(list(1, 11, 21))
## [1] 1 11 21
simplify2array(list(1:3, 11:13, 21:23))
        [,1] [,2] [,3]
##
## [1,]
               11
           1
                    21
                    22
## [2,]
           2
               12
## [3,]
           3
               13
                    23
simplify2array(list(1, 11:12, 21:23)) # no can do
## [[1]]
## [1] 1
##
## [[2]]
## [1] 11 12
##
## [[3]]
## [1] 21 22 23
sapply(...) is a nice application of the
                                                    above, meaning
                                                                        sim-
plify2array(lapply(...)).
sapply(split(iris$Sepal.Length, iris$Species), mean)
##
       setosa versicolor virginica
##
        5.006
                   5.936
                              6.588
sapply(split(iris$Sepal.Length, iris$Species), summary)
           setosa versicolor virginica
##
## Min.
            4.300
                       4.900
                                  4,900
## 1st Qu.
            4.800
                       5.600
                                  6.225
## Median
            5.000
                       5.900
                                  6.500
            5.006
                                  6.588
## Mean
                       5.936
## 3rd Ou.
            5.200
                       6.300
                                  6.900
            5.800
## Max.
                       7.000
                                 7.900
Of course, custom functions can also be applied:
min_mean_max <- function(x) {</pre>
    # returns a named vector with three elements
    # (note that the last expression in a function's body
    # is its return value)
```

```
c(min=min(x), mean=mean(x), max=max(x))
```

}
sapply(split(iris\$Sepal.Length, iris\$Species), min_mean_max)
setosa versicolor virginica
min 4.300 4.900 4.900

mean 5.006 5.936 6.588 ## max 5.800 7.000 7.900

Lastly, table(x, y) creates a contingency matrix that counts the number of unique pairs of corresponding elements from two vectors of equal lengths.

```
library("titanic") # data on the passengers of the RMS Titanic
table(titanic_train$Survived)
```

```
##
##
     0
         1
## 549 342
table(titanic_train$Sex)
##
## female
             male
##
      314
              577
table(titanic_train$Survived, titanic_train$Sex)
##
##
       female male
           81
                468
##
     0
##
     1
          233
               109
```

D.1.6 Internal Representation (*)

Note that by setting byrow=TRUE in a call to the matrix() function above, we are reading the elements of the input vector in the row-wise (row-major) fashion. The default is the column-major order, which might be a little unintuitive for some of us.

A <- matrix(c(1, 2, 3, 4, 5, 6), ncol=3, byrow=TRUE)
B <- matrix(c(1, 2, 3, 4, 5, 6), ncol=3) # byrow=FALSE</pre>

It turns out that is exactly the order in which the matrix is stored internally. Under the hood, it is an ordinary numeric vector:

```
mode(B) # == mode(A)
## [1] "numeric"
length(B) # == length(A)
## [1] 6
```

as.numeric(A) ## [1] 1 4 2 5 3 6 as.numeric(B) ## [1] 1 2 3 4 5 6 Also note that we can create a different view on the same underlying data vector: dim(A) <- c(3, 2) # 3 rows, 2 columns А ## [,1] [,2] ## [1,] 1 5 ## [2,] 4 3 ## [3,] 2 6 dim(B) <- c(3, 2) # 3 rows, 2 columns В [,1] [,2] ## ## [1,] 1 4 ## [2,] 2 5 ## [3,] 3 6

D.2 Common Operations

D.2.1 Matrix Transpose

The matrix *transpose* is denoted with \mathbf{A}^T :

t(A)

[,1] [,2] [,3] ## [1,] 1 4 2 ## [2,] 5 3 6

Hence, $\mathbf{B} = \mathbf{A}^T$ is a matrix such that $b_{i,j} = a_{j,i}$.

In other words, in the transposed matrix, rows become columns and columns become rows. For example:

$$\mathbf{A} = \begin{bmatrix} a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \end{bmatrix} \qquad \mathbf{A}^{\mathrm{T}} = \begin{bmatrix} a_{1,1} & a_{2,1} \\ a_{1,2} & a_{2,2} \\ a_{1,3} & a_{2,3} \end{bmatrix}$$

D.2.2 Matrix-Scalar Operations

Operations such as sA (multiplication of a matrix by a scalar), -A, s + A etc. are applied on each element of the input matrix:

```
(A <- matrix(c(1, 2, 3, 4, 5, 6), byrow=TRUE, nrow=2))
       [,1] [,2] [,3]
##
## [1,]
          1
               2
                   3
## [2,]
          4
            5
                   6
(-1)*A
##
       [,1] [,2] [,3]
## [1,] -1 -2 -3
## [2,] -4 -5 -6
```

In R, the same rule holds when we compute other operations (despite the fact that, mathematically, e.g., A^2 or $A \ge 0$ might have a different meaning):

A^2 # this is not A-matrix-multiply-A, see below

[,1] [,2] [,3]
[1,] 1 4 9
[2,] 16 25 36
A>=3

```
## [,1] [,2] [,3]
## [1,] FALSE FALSE TRUE
## [2,] TRUE TRUE TRUE TRUE
```

D.2.3 Matrix-Matrix Operations

If $\mathbf{A}, \mathbf{B} \in \mathbb{R}^{n \times p}$ are two matrices of identical sizes, then $\mathbf{A} + \mathbf{B}$ and $\mathbf{A} - \mathbf{B}$ are understood elementwise, i.e., they result in $\mathbf{C} \in \mathbb{R}^{n \times p}$ such that $c_{i,j} = a_{i,j} \pm b_{i,j}$.

A-A

##		[,1]	[,2]	[,3]
##	[1,]	0	0	0
##	[2,]	0	0	0

In R (but not when we use mathematical notation), all other arithmetic, logical and comparison operators are also applied in an elementwise fashion.

A*A

[,1] [,2] [,3] ## [1,] 1 4 9 ## [2,] 16 25 36

314

(A>2) & (A<=5) ## [,1] [,2] [,3] ## [1,] FALSE FALSE TRUE ## [2,] TRUE TRUE FALSE

D.2.4 Matrix Multiplication (*)

Mathematically, **AB** denotes the **matrix multiplication**. It is a very different operation to the elementwise multiplication.

```
(A <- rbind(c(1, 2), c(3, 4)))
##
        [,1] [,2]
## [1,]
           1
                2
## [2,]
           3
                4
(I <- rbind(c(1, 0), c(0, 1)))
        [,1] [,2]
##
## [1,]
           1
                0
## [2,]
           0
                1
A %*% I # matrix multiplication
        [,1] [,2]
##
## [1,]
           1
                2
## [2,]
           3
                4
```

This is not the same as the elementwise A*I.

Matrix multiplication can only be performed on two matrices of *compatible sizes* – the number of columns in the left matrix must match the number of rows in the right operand.

Given $\mathbf{A} \in \mathbb{R}^{n \times p}$ and $\mathbf{B} \in \mathbb{R}^{p \times m}$, their multiply is a matrix $\mathbf{C} = \mathbf{A}\mathbf{B} \in \mathbb{R}^{n \times m}$ such that $c_{i,j}$ is the dot product of the *i*-th row in \mathbf{A} and the *j*-th column in \mathbf{B} :

$$c_{i,j} = \mathbf{a}_{i,\cdot} \cdot \mathbf{b}_{\cdot,j} = \sum_{k=1}^{p} a_{i,k} b_{k,j}$$

for i = 1, ..., n and j = 1, ..., m.

Exercise D.1 Multiply a few simple matrices of sizes 2×2 , 2×3 , 3×2 etc. using pen and paper and checking the results in R.

Also remember that, mathematically, *squaring* a matrix is done in terms of matrix multiplication, i.e., $A^2 = AA$. It can only be performed on *square* matrices, i.e., ones with the same number of rows and columns. This is again different than R's element-wise A^2.

Note that $\mathbf{A}^T \mathbf{A}$ gives the matrix that consists of the dot products of all the pairs of columns in \mathbf{A} .

```
crossprod(A) # same as t(A) %*% A
```

[,1] [,2]
[1,] 10 14
[2,] 14 20

In one of the chapters on Regression, we note that the Pearson linear correlation coefficient can be beautifully expressed this way.

D.2.5 Aggregation of Rows and Columns

The apply() function may be used to transform or summarise individual rows or columns in a matrix. More precisely:

- apply(A, 1, f) applies a given function f on each row of A.
- apply(A, 2, f) applies a given function f on each column of A.

Usually, either f returns a single value (when we wish to aggregate all the elements in a row/column) or returns the same number of values (when we wish to transform a row/column). The latter case is covered in the next subsection.

Let's compute the mean of each row and column in A:

```
(A <- matrix(1:18, byrow=TRUE, nrow=3))</pre>
##
        [,1] [,2] [,3] [,4] [,5] [,6]
## [1.]
                2
                      3
                           4
                                5
                                     6
           1
## [2,]
                                     12
           7
                8
                      9
                          10
                               11
## [3,] 13
                    15
               14
                          16
                               17
                                     18
apply(A, 1, mean) # synonym: rowMeans(A)
## [1] 3.5 9.5 15.5
apply(A, 2, mean) # synonym: colMeans(A)
## [1] 7 8 9 10 11 12
We can also fetch the minimal and maximal value by means of the range() function:
apply(A, 1, range)
        [,1] [,2] [,3]
##
## [1,]
           1
                7
                     13
## [2,]
               12
                     18
           6
apply(A, 2, range)
        [,1] [,2] [,3] [,4] [,5] [,6]
##
```

[1,] 1 2 3 4 5 6 ## [2,] 13 14 15 16 17 18

Of course, a custom function can be provided as well. Here we compute the minimum, average and maximum of each row:

apply(A, 1, function(row) c(min(row), mean(row), max(row)))

[,1] [,2] [,3] ## [1,] 1.0 7.0 13.0 ## [2,] 3.5 9.5 15.5 ## [3,] 6.0 12.0 18.0

D.2.6 Vectorised Special Functions

The special functions mentioned in the previous chapter, e.g., sqrt(), abs(), round(), log(), exp(), cos(), sin(), are also performed in an elementwise manner when applied on a matrix object.

```
round(1/A, 2) # rounds every element in 1/A
```

[,1] [,2] [,3] [,4] [,5] [,6] ## [1,] 1.00 0.50 0.33 0.25 0.20 0.17 ## [2,] 0.14 0.12 0.11 0.10 0.09 0.08 ## [3,] 0.08 0.07 0.07 0.06 0.06 0.06

An example plot of the absolute values of sine and cosine functions depicted using the matplot() function (see Figure D.1).

```
x <- seq(-2*pi, 6*pi, by=pi/100)
Y <- cbind(sin(x), cos(x)) # a matrix with two columns
Y <- abs(Y) # take the absolute value of every element in Y
matplot(x, Y, type="l")</pre>
```

D.2.7 Matrix-Vector Operations

Mathematically, there is no generally agreed upon convention defining arithmetic operations between matrices and vectors.

(*) The only exception is the matrix – vector multiplication in the case where an argument is a column or a row vector, i.e., in fact, a matrix. Hence, given $\mathbf{A} \in \mathbb{R}^{n \times p}$ we may write $\mathbf{A}\mathbf{x}$ only if $\mathbf{x} \in \mathbb{R}^{p \times 1}$ is a column vector. Similarly, $\mathbf{y}\mathbf{A}$ makes only sense whenever $\mathbf{y} \in \mathbb{R}^{1 \times n}$ is a row vector.

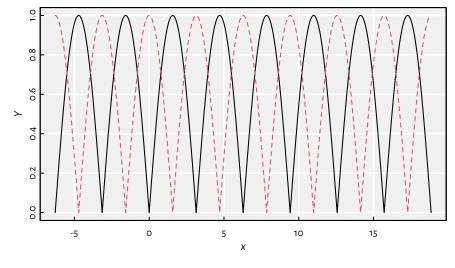


Figure D.1: Example plot with matplot()

Remark. Please take notice of the fact that we consistently discriminate between different bold math fonts and letter cases: X is a matrix, x is a row or column vector (still a matrix, but a sequence-like one) and x is an ordinary vector (one-dimensional sequence).

However, in R, we might sometimes wish to vectorise an arithmetic operation between a matrix and a vector in a row- or column-wise fashion. For example, if $\mathbf{A} \in \mathbb{R}^{n \times p}$ is a matrix and $\mathbf{m} \in \mathbb{R}^{1 \times p}$ is a row vector, we might want to subtract m_i from each element in the *i*-th column. Here, the apply() function comes in handy again.

Example: to create a *centred* version of a given matrix, we need to subtract from each element the arithmetic mean of its column.

```
(A <- cbind(c(1, 2), c(2, 4), c(5, 8)))
##
        [,1] [,2] [,3]
## [1,]
           1
                 2
                      5
## [2,]
           2
                 4
                      8
(m <- apply(A, 2, mean)) # same as colMeans(A)</pre>
## [1] 1.5 3.0 6.5
t(apply(A, 1, function(r) r-m)) # note the transpose here
        [,1] [,2] [,3]
##
```

[1,] -0.5 -1 -1.5
[2,] 0.5 1 1.5
The above is equivalent to:
apply(A, 2, function(c) c-mean(c))
[,1] [,2] [,3]
[1,] -0.5 -1 -1.5
[2,] 0.5 1 1.5

D.3 Matrix Subsetting

Example matrices:

```
(A <- matrix(1:12, byrow=TRUE, nrow=3))</pre>
       [,1] [,2] [,3] [,4]
##
## [1,] 1 2
                   3
                        4
## [2,]
          5
             6
                   7
                        8
## [3,] 9
             10 11
                       12
B <- A
dimnames(B) <- list(</pre>
   c("a", "b", "c"), # row labels
   c("x", "y", "z", "w") # column labels
)
В
##
    X Y Z W
## a 1 2 3 4
## b 5 6 7 8
## c 9 10 11 12
```

D.3.1 Selecting Individual Elements

Matrices are two-dimensional structures: items are aligned in rows and columns. Hence, to extract an element from a matrix, we will need two indices. Mathematically, given a matrix \mathbf{A} , $a_{i,j}$ stands for the element in the *i*-th row and the *j*-th column. The same in R:

A[1, 2] # 1st row, 2nd columns

[1] 2

B["a", "y"] # using dimnames == B[1,2]

[1] 2

D.3.2 Selecting Rows and Columns

We will sometimes use the following notation to emphasise that a matrix A consists of n rows or p columns:

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_{1,\cdot} \\ \mathbf{a}_{2,\cdot} \\ \vdots \\ \mathbf{a}_{n,\cdot} \end{bmatrix} = \begin{bmatrix} \mathbf{a}_{\cdot,1} & \mathbf{a}_{\cdot,2} & \cdots & \mathbf{a}_{\cdot,p} \end{bmatrix}.$$

Here, $\mathbf{a}_{i,\cdot}$ is a row vector of length p, i.e., a $(1 \times p)$ -matrix:

$$\mathbf{a}_{i,\cdot} = \begin{bmatrix} a_{i,1} & a_{i,2} & \cdots & a_{i,p} \end{bmatrix}.$$

Moreover, $\mathbf{a}_{.,i}$ is a *column vector* of length n, i.e., an $(n \times 1)$ -matrix:

$$\mathbf{a}_{\cdot,j} = \begin{bmatrix} a_{1,j} & a_{2,j} & \cdots & a_{n,j} \end{bmatrix}^T = \begin{bmatrix} a_{1,j} \\ a_{2,j} \\ \vdots \\ a_{n,j} \end{bmatrix},$$

We can extract individual rows and columns from a matrix by using the following notation:

```
## [1] 1 2 3 4
A[,2] # 2nd column
## [1] 2 6 10
B["a",] # of course, B[1,] is still legal
## x y z w
## 1 2 3 4
B[,"y"]
## a b c
## 2 6 10
```

A[1,] # 1st row

Note that by extracting a single row/column, we get an atomic (one-dimensional) vector. However, we can preserve the dimensionality of the output object by passing drop=FALSE:

```
A[ 1,
         , drop=FALSE] # 1st row
##
       [,1] [,2] [,3] [,4]
## [1,]
          1 2 3 4
A[ , 2, drop=FALSE] # 2nd column
##
       [,1]
## [1,]
          2
## [2,]
          6
## [3,]
         10
B["a", , drop=FALSE]
## xyzw
## a 1 2 3 4
B[ , "y", drop=FALSE]
##
     у
## a 2
## b 6
## c 10
```

Now this is what we call proper row and column vectors!

D.3.3 Selecting Submatrices

To create a sub-block of a given matrix we pass two indexers, possibly of length greater than one:

```
A[1:2, c(1, 2, 4)] # rows 1,2 columns 1,2,4
##
       [,1] [,2] [,3]
## [1,]
               2
          1
                    4
## [2,] 5 6
                    8
B[c("a", "b"), c(1, 2, 4)]
##
    хуw
## a 1 2 4
## b 5 6 8
A[c(1, 3), 3]
## [1] 3 11
```

```
A[c(1, 3), 3, drop=FALSE]
## [,1]
## [1,] 3
## [2,] 11
```

D.3.4 Selecting Based on Logical Vectors and Matrices

We can also subset a matrix with a logical matrix of the same size. This always yields a (flat) vector in return.

A[A>8]

[1] 9 10 11 12 Logical vectors can also be used as indexers: A[c(TRUE, FALSE, TRUE),] # select 1st and 3rd row ## [,1] [,2] [,3] [,4] ## [1,] 1 2 3 4 ## [2,] 9 10 11 12 A[,colMeans(A)>6] # columns with means > 6 ## [,1] [,2] ## [1,] 3 4 ## [2,] 7 8 ## [3,] 11 12 B[B[,"x"]>1 & B[,"x"]<=9,] # All rows where x is in (1, 9] ## хугw ## b 5 6 7 8 ## c 9 10 11 12

D.3.5 Selecting Based on Two-Column Matrices

Lastly, note that we can also index a matrix A with a 2-column matrix I, i.e., A[I]. This allows for an easy access to A[I[1,1], I[1,2]], A[I[2,1], I[2,2]], A[I[3,1], I[3,2]], ...

This is exactly A[1, 2], A[3, 3], A[2, 2], A[1, 1], A[2, 4].

Exercise D.2 It takes time to get used to the matrix indexing syntax. Executing and reflecting on the following examples, step by step, might help clarify it:

```
X <- matrix(1:12, byrow=TRUE, nrow=3) # example matrix
dimnames(X)[[2]] <- c("a", "b", "c", "d") # set column names
print(X)
X[1, ] # selects the 1st row (row with index 1)
X[, 3] # selects the 3rd column
X[, "a"] # selects column named "a"
X[1, "a"] # selects column named "a"
X[1, "a"] # selects the 1st row and column "a"
X[, c("a", "b", "c")] # selects 3 columns
X[, -2] # all but the 2nd column
X[X[,1] > 5, ] # selects all the rows that have the values in the 1st column greater
X[X[,1]>5, c("a", "b", "c")] # as above, but return only 3 given columns
X[X[,1]>=5 & X[,1]<=10, ] # all rows where in the 1st column values are between 5 an
X[X[,1]>=5 & X[,1]<=10, c("a", "b", "c")] # as above, but 3 given columns
X[, c(1, "b", "d")] # incorrect, atomic vector - 1 will be converted to "1" and there.
```

D.4 Further Reading

Recommended further reading: (Venables et al. 2021)

Other: (Deisenroth et al. 2020), (Peng 2019), (Wickham & Grolemund 2017)

Data Frame Wrangling in R

These lecture notes are distributed in the hope that they will be useful. Any bug reports are appreciated.

R data.frames are similar to matrices in the sense that we use them to store tabular data. However, in data frames each column can be of different type:

head(iris)

##		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
##	1	5.1	3.5	1.4	0.2	setosa
##	2	4.9	3.0	1.4	0.2	setosa
##	3	4.7	3.2	1.3	0.2	setosa
##	4	4.6	3.1	1.5	0.2	setosa
##	5	5.0	3.6	1.4	0.2	setosa
##	6	5.4	3.9	1.7	0.4	setosa

head(rpart::car90, 2)

Country Disp Disp2 Eng.Rev Front.Hd Frt.Leg.Room Frt.Shld ## Acura Integra 3.5 41.5 53.0 Japan 112 1.8 2935 2.0 55.5 ## Acura Legend Japan 163 2.7 2505 41.5 ## Gear.Ratio Gear2 HP HP.revs Height Length Luggage ## Acura Integra 3.26 3.21 130 6000 47.5 177 16 ## Acura Legend 2.95 3.02 160 5900 50.0 191 14 ## Mileage Model2 Price Rear.Hd Rear.Seating RearShld 26.5 ## Acura Integra NA 11950 1.5 52.0 ## Acura Legend 20 24760 2.0 28.5 55.5 ## Reliability Rim Sratio.m Sratio.p Steering Tank Tires ## Acura Integra Much better R14 NA 0.86 power 13.2 195/60 ## Acura Legend Much better R15 NA 0.96 power 18.0 205/60 Trans1 Trans2 Turning Type Weight Wheel.base Width ## Small 2700 ## Acura Integra man.5 auto.4 37 102 67

```
## Acura Legend man.5 auto.4 42 Medium 3265 109 69
```

E.1 Creating Data Frames

Most frequently, we will be creating data frames based on a series of numeric, logical, characters vectors of identical lengths.

```
x <- data.frame(</pre>
   u=runif(5),
    v=sample(c(TRUE, FALSE), 5, replace=TRUE),
   w=LETTERS[1:5]
)
print(x)
##
            u
                  v w
## 1 0.181517 TRUE A
## 2 0.919723 FALSE B
## 3 0.311723 FALSE C
## 4 0.064152 TRUE D
## 5 0.396422 FALSE E
Some objects, such as matrices, can easily be coerced to data frames:
(A <- matrix(1:12, byrow=TRUE, nrow=3,</pre>
    dimnames=list(
        NULL,
                  # row labels
        c("x", "y", "z", "w") # column labels
)))
##
        хугw
## [1,] 1 2 3 4
## [2,] 5 6 7 8
## [3,] 9 10 11 12
as.data.frame(A)
##
     Х
       У
           Ζ
              W
## 1 1
       2
           3 4
## 2 5 6 7 8
## 3 9 10 11 12
```

Named lists are amongst other candidates for a meaningful conversion:

```
(l <- lapply(split(iris$Sepal.Length, iris$Species),
    function(x) {</pre>
```

```
c(min=min(x), median=median(x), mean=mean(x), max=max(x))
    }))
## $setosa
##
      min median
                   mean
                           max
   4.300 5.000 5.006 5.800
##
##
##
  $versicolor
##
      min median
                   mean
                           max
   4.900 5.900 5.936 7.000
##
##
## $virginica
##
      min median
                   mean
                           max
   4.900 6.500 6.588 7.900
##
as.data.frame(l)
##
          setosa versicolor virginica
           4.300
                      4.900
                                4.900
## min
## median 5.000
                      5.900
                                 6.500
           5.006
                      5.936
                                 6.588
## mean
## max
           5.800
                      7.000
                                7.900
```

E.2 Importing Data Frames

Many interesting data frames come from external sources, such as CSV files, web APIs, SQL databases and so on.

In particular, read.csv() (see ?read.table for a long list of tunable parameters) imports data from plain text files organised in a tabular manner (such as comma-separated lists of values):

```
f <- tempfile() # temporary file name
write.csv(x, f, row.names=FALSE) # save data frame to file
cat(readLines(f), sep="\n") # print file contents
## "u","v","w"
## 0.181517061544582,TRUE,"A"
## 0.919722604798153,FALSE,"B"
## 0.31172346835956,FALSE,"C"
## 0.0641516039613634,TRUE,"D"
## 0.396421572659165,FALSE,"E"</pre>
```

read.csv(f)

Note that CSV is by far the most portable format for exchanging matrix-like objects between different programs (statistical or numeric computing environments, spreadsheets etc.).

E.3 Data Frame Subsetting

E.3.1 Each Data Frame is a List

First of all, we should note that each data frame is in fact represented as an ordinary named list:

class(x)

```
## [1] "data.frame"
typeof(x)
```

[1] "list"

Each column is stored as a separate list item. Having said that, we shouldn't be surprised that we already know how to perform quite a few operations on data frames:

length(x) # number of columns

[1] 3
names(x) # column labels
[1] "u" "v" "w"
x\$u # accessing column `u` (synonym: x[["u"]])
[1] 0.181517 0.919723 0.311723 0.064152 0.396422
x[[2]] # 2nd column
[1] TRUE FALSE FALSE TRUE FALSE
x[c(1,3)] # a sub-data.frame

```
## u w
## 1 0.181517 A
## 2 0.919723 B
## 3 0.311723 C
## 4 0.064152 D
## 5 0.396422 E
sapply(x, class) # apply class() on each column
## u v w
## "numeric" "logical" "character"
```

E.3.2 Each Data Frame is Matrix-like

Data frames can be considered as "generalised" matrices. Therefore, operations such as subsetting will work in the same manner.

dim(x) # number of rows and columns ## [1] 5 3 x[1:2,] # first two rows ## u VW ## 1 0.18152 TRUE A ## 2 0.91972 FALSE B x[,c(1,3)] # 1st and 3rd column, synonym: x[c(1,3)] ## II W ## 1 0.181517 A ## 2 0.919723 B ## 3 0.311723 C ## 4 0.064152 D ## 5 0.396422 E x[,1] # synonym: x[[1]] ## [1] 0.181517 0.919723 0.311723 0.064152 0.396422 x[,1,drop=FALSE] # synonym: x[1] ## u ## 1 0.181517 ## 2 0.919723 ## 3 0.311723 ## 4 0.064152 ## 5 0.396422

Take a special note of selecting rows based on logical vectors. For instance, let's ex-

tract all the rows from x where the values in the column named u are between 0.3 and 0.6:

Moreover, subsetting based on integer vectors can be used to change the order of rows. Here is how we can sort the rows in x with respect to the values in column u:

```
(x_sorted <- x[order(x$u),])</pre>
```

 ##
 u
 v w

 ##
 4
 0.064152
 TRUE
 D

 ##
 1
 0.181517
 TRUE
 A

 ##
 3
 0.311723
 FALSE
 C

 ##
 5
 0.396422
 FALSE
 E

 ##
 2
 0.919723
 FALSE
 B

Let's stress that the programming style we emphasise on here is very transparent. If we don't understand how a complex operation is being executed, we can always decompose it into smaller chunks that can be studied separately. For instance, as far as the last example is concerned, we can take a look at the manual of ?order and then inspect the result of calling order(x\$u).

On a side note, we can re-set the row names by referring to:

```
row.names(x_sorted) <- NULL
x_sorted</pre>
```

 ##
 u
 v w

 ##
 1
 0.064152
 TRUE
 D

 ##
 2
 0.181517
 TRUE
 A

 ##
 3
 0.311723
 FALSE
 C

 ##
 4
 0.396422
 FALSE
 E

 ##
 5
 0.919723
 FALSE
 B

E.4 Common Operations

We already know how to filter rows based on logical conditions, e.g.:

Petal.Width Species ## 54 1.3 versicolor ## 56 1.3 versicolor 1.3 versicolor ## 59 ## 65 1.3 versicolor ## 72 1.3 versicolor ## 74 1.2 versicolor ## 75 1.3 versicolor 1.2 versicolor ## 83 ## 88 1.3 versicolor ## 89 1.3 versicolor ## 90 1.3 versicolor 1.2 versicolor ## 91 ## 93 1.2 versicolor ## 95 1.3 versicolor 1.2 versicolor ## 96 ## 97 1.3 versicolor ## 98 1.3 versicolor ## 100 1.3 versicolor iris[iris\$Sepal.Length > 6.5 & iris\$Species == "versicolor",] ## Sepal.Length Sepal.Width Petal.Length Petal.Width Species ## 51 7.0 3.2 4.7 1.4 versicolor ## 53 6.9 3.1 4.9 1.5 versicolor ## 59 6.6 2.9 4.6 1.3 versicolor 6.7 1.4 versicolor ## 66 3.1 4.4 ## 76 6.6 3.0 4.4 1.4 versicolor ## 77 6.8 2.8 4.8 1.4 versicolor ## 78 6.7 1.7 versicolor 3.0 5.0 ## 87 6.7 3.1 4.7 1.5 versicolor and aggregate information in individual columns:

```
sapply(iris[1:4], summary)
```

##		Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
##	Min.	4.3000	2.0000	1.000	0.1000
##	1st Qu.	5.1000	2.8000	1.600	0.3000

## Median	5.8000	3.0000	4.350	1.3000
## Mean	5.8433	3.0573	3.758	1.1993
## 3rd Qu.	6.4000	3.3000	5.100	1.8000
## Max.	7.9000	4.4000	6.900	2.5000

Quite frequently, we will be interested in summarising data within subgroups generated by a list of factor-like variables.

```
aggregate(iris[1:4], iris[5], mean) # not: iris[, 5] !
```

##	Species	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width
## 1	. setosa	5.006	3.428	1.462	0.246
## 2	versicolor	5.936	2.770	4.260	1.326
## 3	8 virginica	6.588	2.974	5.552	2.026

```
ToothGrowth[sample(nrow(ToothGrowth), 5), ] # 5 random rows
```

## l	en supp	o dose		
## 12 16	.5 VC	1.0		
## 10 7	.0 VC	0.5		
## 17 13	.6 VC	1.0		
## 50 27	.3 OJ	J 1.0		
## 60 23	.0 OJ	J 2.0		
aggregat	e(Tooth	Growth["len"],	ToothGrowth[c("supp",	"dose")], median)
## sup	o dose	len		
## 1 0	J 0.5	12.25		
## 2 V	C 0.5	7.15		
## 3 0	J 1.0	23.45		

5 OJ 2.0 25.95 ## 6 VC 2.0 25.95

VC 1.0 16.50

According to the manual of the aggregate function, see help("aggregate"), the syntax is aggregate(x, by, FUN), where:

- x is a data frame whose columns are to be aggregated;
- by is a list of grouping elements, each as long as the variables in the data frame x; recall that each data frame is a list of vectors of identical lengths, so ultimately this can also be a data frame as well; this is why we have written iris[5] and neither iris[[5]] nor iris[, 5] (although we could have used the iris[, 5, drop=FALSE] notation);
- FUN is an R function to be applied on each column in x within all groups of observations defined by by.

Further arguments can be passed to the function being called, e.g., using the notation like aggregate(X, y, mean, na.rm=TRUE).

.. ..

4

Exercise E.1 Below are examples using the built-in ToothGrowth data frame. As an exercise, run all the following lines in R and study the results carefully:

```
ToothGrowth["supp"] # selects a specific column from a data frame; the result is sti

ToothGrowth[["supp"]] # this is different - this is a vector; cannot be used in aggre

ToothGrowth[c("supp", "dose")] # selects 2 columns

aggregate(ToothGrowth["len"], ToothGrowth["supp"], mean) # computing average len in

aggregate(ToothGrowth["len"], ToothGrowth[c("supp", "dose")], mean) # computing average

f <- function(x) c(MEAN=mean(x), MEDIAN=median(x)) # a custom function that returns

aggregate(ToothGrowth["len"], ToothGrowth["supp"], f)

aggregate(ToothGrowth["len"], ToothGrowth[c("supp", "dose")], f)
```

Exercise E.2 We can introduce new grouping variables of any kind, for example based on data in other columns. Run the following line by line:

```
ToothGrowth[["dose_1_or_2"]] <- ToothGrowth[["dose"]] >= 1.0 # note 2 square bracket.
ToothGrowth # note the added column
aggregate(ToothGrowth["len"], ToothGrowth["dose_1_or_2"], function(x) c(MIN=min(x), M
```

Taking into account that split() accepts a data frame input as well, we can perform what follows:

```
sapply(
    # split iris into 3 sub-data.frames:
    split(iris, iris[5]),
    # on each sub-data.frame, apply the following function
    function(df) {
        # compute the mean of first four columns:
        sapply(df[1:4], mean)
    })
##
                setosa versicolor virginica
## Sepal.Length 5.006
                            5.936
                                      6.588
## Sepal.Width
                 3.428
                            2.770
                                      2.974
## Petal.Length 1.462
                            4.260
                                      5.552
## Petal.Width
                 0.246
                            1.326
                                      2.026
sapply(split(iris, iris[5]), function(df) {
    c(Sepal.Length=summary(iris$Sepal.Length),
      Petal.Length=summary(iris$Petal.Length)
     )
})
##
                        setosa versicolor virginica
## Sepal.Length.Min.
                        4.3000
                                   4.3000
                                             4.3000
## Sepal.Length.1st Qu. 5.1000
                                   5.1000
                                             5.1000
## Sepal.Length.Median 5.8000
                                   5.8000
                                             5.8000
## Sepal.Length.Mean
                                             5.8433
                        5.8433
                                   5.8433
```

##	Sepal.Length.3rd Qu.	6.4000	6.4000	6.4000
##	Sepal.Length.Max.	7.9000	7.9000	7.9000
##	Petal.Length.Min.	1.0000	1.0000	1.0000
##	Petal.Length.1st Qu.	1.6000	1.6000	1.6000
##	Petal.Length.Median	4.3500	4.3500	4.3500
##	Petal.Length.Mean	3.7580	3.7580	3.7580
##	Petal.Length.3rd Qu.	5.1000	5.1000	5.1000
##	Petal.Length.Max.	6.9000	6.9000	6.9000

The above syntax solely relies on the building blocks that we have already mastered! This should be very appealing to the minimalists.

Note that R packages data.table and dplyr provide us with reimplementations of the most important functions for the processing of data frames. We only cover the classic/base functions here, because they have existed since the very beginning of R. These are known to every R user and are likely to work this way forever. Having said this, we should acknowledge that some users might find dplyr or data.table more convenient (oftentimes they are faster or handle big data better) in many contexts. The problem, though, is that when faced with less typical problems (as a future AI/ML engineer/data scientist we'll be particularly exposed to them), we'll have to fall back to base R anyway, because it is more powerful and gives us more transferable skills (also with regards to objects of different types, e.g., matrices). This is exactly why we prefer functions like aggregate() subsetting like df[,], etc.

E.5 Metaprogramming and Formulas (*)

R (together with a few other programming languages such as Lisp and Scheme, that heavily inspired R's semantics) allows its programmers to apply some *metaprogramming* techniques, that is, to write programs that manipulate unevaluated R expressions.

For instance, take a close look at the following plot:

```
z <- seq(-2*pi, 2*pi, length.out=101)
plot(z, sin(z), type="l")</pre>
```

How did the plot() function know that we are plotting sin of z (see Figure E.1)? It turns out that, at any time, we not only have access to the value of an object (such as the result of evaluating sin(z), which is a vector of 101 reals) but also to the expression that was passed as a function's argument itself.

```
test_meta <- function(x) {
    cat("x equals to ", x, "\n") # \n == newline
    cat("x stemmed from ", deparse(substitute(x)), "\n")</pre>
```

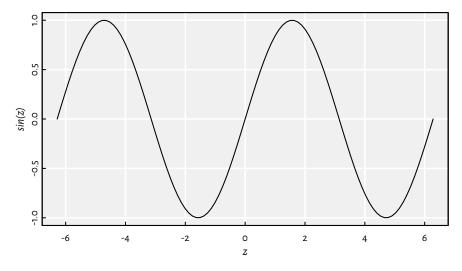


Figure E.1: Metaprogramming in action: Just take a look at the Y axis label

```
}
test_meta(2+7)
```

```
## x equals to 9
## x stemmed from 2 + 7
```

This is very powerful and yet potentially very confusing to the users, because we can write functions that don't compute the arguments provided in a way we expect them to (i.e., following the R language specification). Each function can constitute a new micro-verse, where with its own rules – we should always refer to the documentation.

For instance, consider the subset() function:

```
head(iris)
```

```
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
##
              5.1
## 1
                           3.5
                                         1.4
                                                      0.2 setosa
              4.9
                           3.0
                                         1.4
                                                      0.2
## 2
                                                           setosa
              4.7
                                         1.3
                           3.2
                                                      0.2
## 3
                                                           setosa
              4.6
## 4
                           3.1
                                         1.5
                                                      0.2
                                                           setosa
## 5
              5.0
                           3.6
                                         1.4
                                                      0.2
                                                           setosa
## 6
              5.4
                           3.9
                                         1.7
                                                      0.4 setosa
subset(iris, Sepal.Length>7.5, select=-(Sepal.Width:Petal.Width))
       Sepal.Length
                       Species
##
## 106
                7.6 virginica
```

118	7.7	virginica
119	7.7	virginica
123	7.7	virginica
132	7.9	virginica
136	7.7	virginica
	119 123 132	1197.71237.71327.9

Neither Sepal.Length>6 nor - (Sepal.Width:Petal.Width) make sense as standalone R expressions! However, according to the subset() function's own rules, the former expression is considered as a row selector (here, Sepal.Length refers to a particular column *within* the iris data frame). The latter plays the role of a column filter (select everything but all the columns between...).

The data.table and dplyr packages (which are very popular) rely on this language feature all the time, so we shouldn't be surprised when we see them.

There is one more interesting language feature that is possible thanks to metaprogramming. *Formulas* are special R objects that consist of two unevaluated R expressions separated by a tilde (~). For example:

```
len ~ supp+dose
```

len ~ supp + dose

A formula on its own has no meaning. However, many R functions accept formulas as arguments and can interpret them in various different ways.

For example, the lm() function that fits a linear regression model, uses formulas to specify the output and input variables:

```
lm(Sepal.Length~Petal.Length+Sepal.Width, data=iris)
```

```
##
## Call:
## Call:
## lm(formula = Sepal.Length ~ Petal.Length + Sepal.Width, data = iris)
##
## Coefficients:
## (Intercept) Petal.Length Sepal.Width
## 2.249 0.472 0.596
```

On the other hand, boxplot() (see Figure E.2) allows for creating separate box-and-whisker plots for each subgroup given by a combination of factors.

The aggregate() function supports formulas too: aggregate(cbind(Sepal.Length, Sepal.Width)~Species, data=iris, mean)

Species Sepal.Length Sepal.Width

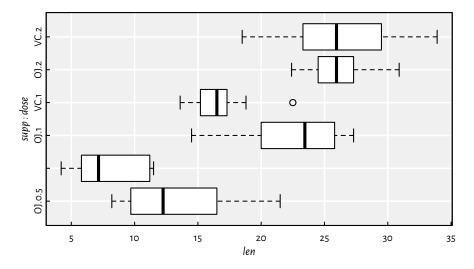


Figure E.2: Example box plot created via the formula interface

##	1	setosa	5.006	3.428
##	2	versicolor	5.936	2.770
##	3	virginica	6.588	2.974

We should therefore make sure that we know how every function interacts with a formula – information on that can be found in ?lm, ?boxplot, ?aggregate and so forth.

E.6 Further Reading

Recommended further reading: (Venables et al. 2021)

Other: (Peng 2019), (Wickham & Grolemund 2017)

R packages dplyr and data.table implement the most common data frame wrangling procedures. You may find them very useful. Moreover, they are very fast even for large data sets. Additionally, the magrittr package provides a pipe operator, %>%, that simplifies the writing of complex, nested function calls. Do note that not everyone is a big fan of these, however.

References

Bezdek JC, Ehrlich R, Full W (1984) FCM: The fuzzy c-means clustering algorithm. *Computer and Geosciences* 10, 191–203.

Bishop C (2006) *Pattern recognition and machine learning*. Springer-Verlag https://www.microsoft.com/en-us/research/people/cmbishop/.

Boyd S, Vandenberghe L (2004) *Convex optimization*. Cambridge University Press ht tps://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf.

Breiman L, Friedman J, Stone CJ, Olshen RA (1984) *Classification and regression trees*. Chapman; Hall/CRC.

Campello RJGB, Moulavi D, Zimek A, Sander J (2015) Hierarchical density estimates for data clustering, visualization, and outlier detection¹. *ACM Transactions on Knowledge Discovery from Data* 10, 5:1–5:51.

Cena A, Gagolewski M (2020) Genie+OWA: Robustifying hierarchical clustering with OWA-based linkages². *Information Sciences* 520, 324–336.

Cortez P, Cerdeira A, Almeida F, Matos T, Reis J (2009) Modeling wine preferences by data mining from physicochemical properties. *Decision Support Systems* 47, 547–553.

Deisenroth MP, Faisal AA, Ong CS (2020) *Mathematics for machine learning*. Cambridge University Press https://mml-book.com/.

Ester M, Kriegel H-P, Sander J, Xu X (1996) A density-based algorithm for discovering clusters in large spatial databases with noise *Proc. KDD*'96, pp. 226–231.

Fletcher R (2008) Practical methods of optimization. Wiley.

Gagolewski M, Bartoszuk M, Cena A (2016) Genie: A new, fast, and outlier-resistant hierarchical clustering algorithm³. *Information Sciences* 363, 8–23.

Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley.

Goodfellow I, Bengio Y, Courville A (2016) *Deep learning*. MIT Press https://www.de eplearningbook.org/.

Harper FM, Konstan JA (2015) The MovieLens datasets: History and context⁴. ACM *Transactions on Interactive Intelligent Systems* 5, 19:1–19:19.

Hastie T, Tibshirani R, Friedman J (2017) *The elements of statistical learning*. Springer-Verlag https://web.stanford.edu/~hastie/ElemStatLearn/.

Herlocker JL, Konstan JA, Terveen LG, Riedl JT (2004) Evaluating collaborative filtering recommender systems. *ACM Transactions on Information Systems* 22, 5–53. https:

¹https://doi.org/10.1145/2733381

²https://doi.org/10.1016/j.ins.2020.02.025

³https://doi.org/10.1016/j.ins.2016.05.003

⁴https://doi.org/10.1145/2827872

//web.archive.org/web/20070306161407/http://web.engr.oregonstate.edu/~herloc k/papers/eval_tois.pdf.

Hubert L, Arabie P (1985) Comparing partitions. Journal of Classification 2, 193–218.

James G, Witten D, Hastie T, Tibshirani R (2017) An introduction to statistical learning with applications in R. Springer-Verlag https://www.statlearning.com/.

Koren Y (2009) *The BellKor solution to the Netflix grand prize*. https://netflixprize.com/a ssets/GrandPrize2009_BPC_BellKor.pdf.

Ling RF (1973) A probability theory of cluster analysis. *Journal of the American Statistical* Association 68, 159–164.

Lü L et al. (2012) Recommender systems. *Physics Reports* 519, 1–49. https://arxiv.org/pdf/1202.1112.pdf.

Müller AC, Nowozin S, Lampert CH (2012) Information theoretic clustering using minimum spanning trees *Proc. German conference on pattern recognition*, https://github.com/amueller/information-theoretic-mst.

Ng AY, Jordan MI, Weiss Y (2001) On spectral clustering: Analysis and an algorithm *Proc. Advances in neural information processing systems 14 (NIPS'01)*, https://papers.nips.cc/paper/2092-on-spectral-clustering-analysis-and-an-algorithm.pdf.

Nocedal J, Wright SJ (2006) Numerical optimization. Springer.

Peng RD (2019) *R programming for data science*. https://bookdown.org/rdpeng/rprogd atascience/.

Piotte M, Chabbert M (2009) *The Pragmatic Theory solution to the Netflix grand prize*. ht tps://netflixprize.com/assets/GrandPrize2009_BPC_PragmaticTheory.pdf.

Quinlan R (1986) Induction of decision trees. *Machine Learning* 1, 81–106.

Quinlan R (1993) C4.5: Programs for machine learning. Morgan Kaufmann Publishers.

R Development Core Team (2021) *R: A language and environment for statistical computing*. R Foundation for Statistical Computing, Vienna, Austria http://www.R-project.org. Rezaei M, Fränti P (2016) Set-matching measures for external cluster validity. *IEEE Transactions on Knowledge and Data Engineering* 28, 2173–2186.

Ricci F, Rokach L, Shapira B, Kantor P (eds) (2011) *Recommender systems handbook*. Springer http://www.inf.unibz.it/~ricci/papers/intro-rec-sys-handbook.pdf.

Sarle WS et al. (eds) (2002) The comp.ai.neural-nets FAQ. http://www.faqs.org/faq s/ai-faq/neural-nets/part1/.

Simon D (2013) Evolutionary optimization algorithms: Biologically-inspired and populationbased approaches to computer intelligence. Wiley.

Therneau TM, Atkinson EJ (2019) An introduction to recursive partitioning using the RPART routines. https://cran.r-project.org/web/packages/rpart/vignettes/longi ntro.pdf.

Töscher A, Jahrer M, Bell RM (2009) *The BigChaos solution to the Netflix grand prize*. ht tps://netflixprize.com/assets/GrandPrize2009_BPC_BigChaos.pdf.

Venables WN, Smith DM, R Core Team (2021) An introduction to R. https://cran.rproject.org/doc/manuals/r-release/R-intro.pdf.

Wickham H, Grolemund G (2017) R for data science. O'Reilly https://r4ds.had.co.nz/. Zhang T, Ramakrishnan R, Livny M (1996) BIRCH: An efficient data clustering method for large databases *Proc. ACM SIGMOD international conference on management* of data – SIGMOD'96, pp. 103–114.